Step |
Hyp |
Ref |
Expression |
1 |
|
taupilem2 |
⊢ τ ≤ ( 2 · π ) |
2 |
|
inss1 |
⊢ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ⊆ ℝ+ |
3 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
4 |
2 3
|
sstri |
⊢ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ⊆ ℝ |
5 |
|
2rp |
⊢ 2 ∈ ℝ+ |
6 |
|
pirp |
⊢ π ∈ ℝ+ |
7 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 2 · π ) ∈ ℝ+ ) |
8 |
5 6 7
|
mp2an |
⊢ ( 2 · π ) ∈ ℝ+ |
9 |
|
cos2pi |
⊢ ( cos ‘ ( 2 · π ) ) = 1 |
10 |
|
taupilem3 |
⊢ ( ( 2 · π ) ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ↔ ( ( 2 · π ) ∈ ℝ+ ∧ ( cos ‘ ( 2 · π ) ) = 1 ) ) |
11 |
8 9 10
|
mpbir2an |
⊢ ( 2 · π ) ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) |
12 |
11
|
ne0ii |
⊢ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ≠ ∅ |
13 |
|
taupilemrplb |
⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) 𝑥 ≤ 𝑦 |
14 |
4 12 13
|
3pm3.2i |
⊢ ( ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) 𝑥 ≤ 𝑦 ) |
15 |
|
2re |
⊢ 2 ∈ ℝ |
16 |
|
pire |
⊢ π ∈ ℝ |
17 |
15 16
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
18 |
|
infregelb |
⊢ ( ( ( ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) 𝑥 ≤ 𝑦 ) ∧ ( 2 · π ) ∈ ℝ ) → ( ( 2 · π ) ≤ inf ( ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) , ℝ , < ) ↔ ∀ 𝑥 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ( 2 · π ) ≤ 𝑥 ) ) |
19 |
14 17 18
|
mp2an |
⊢ ( ( 2 · π ) ≤ inf ( ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) , ℝ , < ) ↔ ∀ 𝑥 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ( 2 · π ) ≤ 𝑥 ) |
20 |
|
taupilem3 |
⊢ ( 𝑥 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ↔ ( 𝑥 ∈ ℝ+ ∧ ( cos ‘ 𝑥 ) = 1 ) ) |
21 |
|
taupilem1 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( cos ‘ 𝑥 ) = 1 ) → ( 2 · π ) ≤ 𝑥 ) |
22 |
20 21
|
sylbi |
⊢ ( 𝑥 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) → ( 2 · π ) ≤ 𝑥 ) |
23 |
19 22
|
mprgbir |
⊢ ( 2 · π ) ≤ inf ( ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) , ℝ , < ) |
24 |
|
df-tau |
⊢ τ = inf ( ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) , ℝ , < ) |
25 |
23 24
|
breqtrri |
⊢ ( 2 · π ) ≤ τ |
26 |
|
infrecl |
⊢ ( ( ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) 𝑥 ≤ 𝑦 ) → inf ( ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) , ℝ , < ) ∈ ℝ ) |
27 |
14 26
|
ax-mp |
⊢ inf ( ( ℝ+ ∩ ( ◡ cos “ { 1 } ) ) , ℝ , < ) ∈ ℝ |
28 |
24 27
|
eqeltri |
⊢ τ ∈ ℝ |
29 |
28 17
|
letri3i |
⊢ ( τ = ( 2 · π ) ↔ ( τ ≤ ( 2 · π ) ∧ ( 2 · π ) ≤ τ ) ) |
30 |
1 25 29
|
mpbir2an |
⊢ τ = ( 2 · π ) |