Metamath Proof Explorer


Theorem taupi

Description: Relationship between _tau and _pi . This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019) (Revised by AV, 1-Oct-2020)

Ref Expression
Assertion taupi τ = ( 2 · π )

Proof

Step Hyp Ref Expression
1 taupilem2 τ ≤ ( 2 · π )
2 inss1 ( ℝ+ ∩ ( cos “ { 1 } ) ) ⊆ ℝ+
3 rpssre + ⊆ ℝ
4 2 3 sstri ( ℝ+ ∩ ( cos “ { 1 } ) ) ⊆ ℝ
5 2rp 2 ∈ ℝ+
6 pirp π ∈ ℝ+
7 rpmulcl ( ( 2 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 2 · π ) ∈ ℝ+ )
8 5 6 7 mp2an ( 2 · π ) ∈ ℝ+
9 cos2pi ( cos ‘ ( 2 · π ) ) = 1
10 taupilem3 ( ( 2 · π ) ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) ↔ ( ( 2 · π ) ∈ ℝ+ ∧ ( cos ‘ ( 2 · π ) ) = 1 ) )
11 8 9 10 mpbir2an ( 2 · π ) ∈ ( ℝ+ ∩ ( cos “ { 1 } ) )
12 11 ne0ii ( ℝ+ ∩ ( cos “ { 1 } ) ) ≠ ∅
13 taupilemrplb 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) 𝑥𝑦
14 4 12 13 3pm3.2i ( ( ℝ+ ∩ ( cos “ { 1 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( cos “ { 1 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) 𝑥𝑦 )
15 2re 2 ∈ ℝ
16 pire π ∈ ℝ
17 15 16 remulcli ( 2 · π ) ∈ ℝ
18 infregelb ( ( ( ( ℝ+ ∩ ( cos “ { 1 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( cos “ { 1 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) 𝑥𝑦 ) ∧ ( 2 · π ) ∈ ℝ ) → ( ( 2 · π ) ≤ inf ( ( ℝ+ ∩ ( cos “ { 1 } ) ) , ℝ , < ) ↔ ∀ 𝑥 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) ( 2 · π ) ≤ 𝑥 ) )
19 14 17 18 mp2an ( ( 2 · π ) ≤ inf ( ( ℝ+ ∩ ( cos “ { 1 } ) ) , ℝ , < ) ↔ ∀ 𝑥 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) ( 2 · π ) ≤ 𝑥 )
20 taupilem3 ( 𝑥 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) ↔ ( 𝑥 ∈ ℝ+ ∧ ( cos ‘ 𝑥 ) = 1 ) )
21 taupilem1 ( ( 𝑥 ∈ ℝ+ ∧ ( cos ‘ 𝑥 ) = 1 ) → ( 2 · π ) ≤ 𝑥 )
22 20 21 sylbi ( 𝑥 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) → ( 2 · π ) ≤ 𝑥 )
23 19 22 mprgbir ( 2 · π ) ≤ inf ( ( ℝ+ ∩ ( cos “ { 1 } ) ) , ℝ , < )
24 df-tau τ = inf ( ( ℝ+ ∩ ( cos “ { 1 } ) ) , ℝ , < )
25 23 24 breqtrri ( 2 · π ) ≤ τ
26 infrecl ( ( ( ℝ+ ∩ ( cos “ { 1 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( cos “ { 1 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( cos “ { 1 } ) ) 𝑥𝑦 ) → inf ( ( ℝ+ ∩ ( cos “ { 1 } ) ) , ℝ , < ) ∈ ℝ )
27 14 26 ax-mp inf ( ( ℝ+ ∩ ( cos “ { 1 } ) ) , ℝ , < ) ∈ ℝ
28 24 27 eqeltri τ ∈ ℝ
29 28 17 letri3i ( τ = ( 2 · π ) ↔ ( τ ≤ ( 2 · π ) ∧ ( 2 · π ) ≤ τ ) )
30 1 25 29 mpbir2an τ = ( 2 · π )