Step |
Hyp |
Ref |
Expression |
1 |
|
df-tau |
|- _tau = inf ( ( RR+ i^i ( `' cos " { 1 } ) ) , RR , < ) |
2 |
|
inss1 |
|- ( RR+ i^i ( `' cos " { 1 } ) ) C_ RR+ |
3 |
|
rpssre |
|- RR+ C_ RR |
4 |
2 3
|
sstri |
|- ( RR+ i^i ( `' cos " { 1 } ) ) C_ RR |
5 |
|
taupilemrplb |
|- E. x e. RR A. y e. ( RR+ i^i ( `' cos " { 1 } ) ) x <_ y |
6 |
|
2rp |
|- 2 e. RR+ |
7 |
|
pirp |
|- _pi e. RR+ |
8 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
9 |
6 7 8
|
mp2an |
|- ( 2 x. _pi ) e. RR+ |
10 |
|
cos2pi |
|- ( cos ` ( 2 x. _pi ) ) = 1 |
11 |
|
taupilem3 |
|- ( ( 2 x. _pi ) e. ( RR+ i^i ( `' cos " { 1 } ) ) <-> ( ( 2 x. _pi ) e. RR+ /\ ( cos ` ( 2 x. _pi ) ) = 1 ) ) |
12 |
9 10 11
|
mpbir2an |
|- ( 2 x. _pi ) e. ( RR+ i^i ( `' cos " { 1 } ) ) |
13 |
|
infrelb |
|- ( ( ( RR+ i^i ( `' cos " { 1 } ) ) C_ RR /\ E. x e. RR A. y e. ( RR+ i^i ( `' cos " { 1 } ) ) x <_ y /\ ( 2 x. _pi ) e. ( RR+ i^i ( `' cos " { 1 } ) ) ) -> inf ( ( RR+ i^i ( `' cos " { 1 } ) ) , RR , < ) <_ ( 2 x. _pi ) ) |
14 |
4 5 12 13
|
mp3an |
|- inf ( ( RR+ i^i ( `' cos " { 1 } ) ) , RR , < ) <_ ( 2 x. _pi ) |
15 |
1 14
|
eqbrtri |
|- _tau <_ ( 2 x. _pi ) |