Metamath Proof Explorer


Theorem taupilem2

Description: Lemma for taupi . The smallest positive real whose cosine is one is at most 2 x. _pi . (Contributed by Jim Kingdon, 19-Feb-2019) (Revised by AV, 1-Oct-2020)

Ref Expression
Assertion taupilem2 τ2π

Proof

Step Hyp Ref Expression
1 df-tau τ=sup+cos-11<
2 inss1 +cos-11+
3 rpssre +
4 2 3 sstri +cos-11
5 taupilemrplb xy+cos-11xy
6 2rp 2+
7 pirp π+
8 rpmulcl 2+π+2π+
9 6 7 8 mp2an 2π+
10 cos2pi cos2π=1
11 taupilem3 2π+cos-112π+cos2π=1
12 9 10 11 mpbir2an 2π+cos-11
13 infrelb +cos-11xy+cos-11xy2π+cos-11sup+cos-11<2π
14 4 5 12 13 mp3an sup+cos-11<2π
15 1 14 eqbrtri τ2π