| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tc2.1 |
⊢ 𝐴 ∈ V |
| 2 |
1
|
snss |
⊢ ( 𝐴 ∈ 𝑥 ↔ { 𝐴 } ⊆ 𝑥 ) |
| 3 |
2
|
anbi1i |
⊢ ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) ↔ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
| 4 |
3
|
abbii |
⊢ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } = { 𝑥 ∣ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 5 |
4
|
inteqi |
⊢ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } = ∩ { 𝑥 ∣ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 6 |
1
|
tc2 |
⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) = ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
| 7 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 8 |
|
tcvalg |
⊢ ( { 𝐴 } ∈ V → ( TC ‘ { 𝐴 } ) = ∩ { 𝑥 ∣ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 9 |
7 8
|
ax-mp |
⊢ ( TC ‘ { 𝐴 } ) = ∩ { 𝑥 ∣ ( { 𝐴 } ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 10 |
5 6 9
|
3eqtr4ri |
⊢ ( TC ‘ { 𝐴 } ) = ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |