Metamath Proof Explorer


Theorem tcsni

Description: The transitive closure of a singleton. Proof suggested by GΓ©rard Lang. (Contributed by Mario Carneiro, 4-Jun-2015)

Ref Expression
Hypothesis tc2.1 ⊒ 𝐴 ∈ V
Assertion tcsni ( TC β€˜ { 𝐴 } ) = ( ( TC β€˜ 𝐴 ) βˆͺ { 𝐴 } )

Proof

Step Hyp Ref Expression
1 tc2.1 ⊒ 𝐴 ∈ V
2 1 snss ⊒ ( 𝐴 ∈ π‘₯ ↔ { 𝐴 } βŠ† π‘₯ )
3 2 anbi1i ⊒ ( ( 𝐴 ∈ π‘₯ ∧ Tr π‘₯ ) ↔ ( { 𝐴 } βŠ† π‘₯ ∧ Tr π‘₯ ) )
4 3 abbii ⊒ { π‘₯ ∣ ( 𝐴 ∈ π‘₯ ∧ Tr π‘₯ ) } = { π‘₯ ∣ ( { 𝐴 } βŠ† π‘₯ ∧ Tr π‘₯ ) }
5 4 inteqi ⊒ ∩ { π‘₯ ∣ ( 𝐴 ∈ π‘₯ ∧ Tr π‘₯ ) } = ∩ { π‘₯ ∣ ( { 𝐴 } βŠ† π‘₯ ∧ Tr π‘₯ ) }
6 1 tc2 ⊒ ( ( TC β€˜ 𝐴 ) βˆͺ { 𝐴 } ) = ∩ { π‘₯ ∣ ( 𝐴 ∈ π‘₯ ∧ Tr π‘₯ ) }
7 snex ⊒ { 𝐴 } ∈ V
8 tcvalg ⊒ ( { 𝐴 } ∈ V β†’ ( TC β€˜ { 𝐴 } ) = ∩ { π‘₯ ∣ ( { 𝐴 } βŠ† π‘₯ ∧ Tr π‘₯ ) } )
9 7 8 ax-mp ⊒ ( TC β€˜ { 𝐴 } ) = ∩ { π‘₯ ∣ ( { 𝐴 } βŠ† π‘₯ ∧ Tr π‘₯ ) }
10 5 6 9 3eqtr4ri ⊒ ( TC β€˜ { 𝐴 } ) = ( ( TC β€˜ 𝐴 ) βˆͺ { 𝐴 } )