Step |
Hyp |
Ref |
Expression |
1 |
|
tc2.1 |
β’ π΄ β V |
2 |
1
|
snss |
β’ ( π΄ β π₯ β { π΄ } β π₯ ) |
3 |
2
|
anbi1i |
β’ ( ( π΄ β π₯ β§ Tr π₯ ) β ( { π΄ } β π₯ β§ Tr π₯ ) ) |
4 |
3
|
abbii |
β’ { π₯ β£ ( π΄ β π₯ β§ Tr π₯ ) } = { π₯ β£ ( { π΄ } β π₯ β§ Tr π₯ ) } |
5 |
4
|
inteqi |
β’ β© { π₯ β£ ( π΄ β π₯ β§ Tr π₯ ) } = β© { π₯ β£ ( { π΄ } β π₯ β§ Tr π₯ ) } |
6 |
1
|
tc2 |
β’ ( ( TC β π΄ ) βͺ { π΄ } ) = β© { π₯ β£ ( π΄ β π₯ β§ Tr π₯ ) } |
7 |
|
snex |
β’ { π΄ } β V |
8 |
|
tcvalg |
β’ ( { π΄ } β V β ( TC β { π΄ } ) = β© { π₯ β£ ( { π΄ } β π₯ β§ Tr π₯ ) } ) |
9 |
7 8
|
ax-mp |
β’ ( TC β { π΄ } ) = β© { π₯ β£ ( { π΄ } β π₯ β§ Tr π₯ ) } |
10 |
5 6 9
|
3eqtr4ri |
β’ ( TC β { π΄ } ) = ( ( TC β π΄ ) βͺ { π΄ } ) |