| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tc2.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
tcvalg |
⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 3 |
1 2
|
ax-mp |
⊢ ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 4 |
|
trss |
⊢ ( Tr 𝑥 → ( 𝐴 ∈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) |
| 5 |
4
|
imdistanri |
⊢ ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) → ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
| 6 |
5
|
ss2abi |
⊢ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 7 |
|
intss |
⊢ ( { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ) |
| 8 |
6 7
|
ax-mp |
⊢ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
| 9 |
3 8
|
eqsstri |
⊢ ( TC ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
| 10 |
1
|
elintab |
⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ↔ ∀ 𝑥 ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) → 𝐴 ∈ 𝑥 ) ) |
| 11 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) → 𝐴 ∈ 𝑥 ) |
| 12 |
10 11
|
mpgbir |
⊢ 𝐴 ∈ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
| 13 |
1
|
snss |
⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ↔ { 𝐴 } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ) |
| 14 |
12 13
|
mpbi |
⊢ { 𝐴 } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
| 15 |
9 14
|
unssi |
⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
| 16 |
1
|
snid |
⊢ 𝐴 ∈ { 𝐴 } |
| 17 |
|
elun2 |
⊢ ( 𝐴 ∈ { 𝐴 } → 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) |
| 18 |
16 17
|
ax-mp |
⊢ 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
| 19 |
|
uniun |
⊢ ∪ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) = ( ∪ ( TC ‘ 𝐴 ) ∪ ∪ { 𝐴 } ) |
| 20 |
|
tctr |
⊢ Tr ( TC ‘ 𝐴 ) |
| 21 |
|
df-tr |
⊢ ( Tr ( TC ‘ 𝐴 ) ↔ ∪ ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) ) |
| 22 |
20 21
|
mpbi |
⊢ ∪ ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) |
| 23 |
1
|
unisn |
⊢ ∪ { 𝐴 } = 𝐴 |
| 24 |
|
tcid |
⊢ ( 𝐴 ∈ V → 𝐴 ⊆ ( TC ‘ 𝐴 ) ) |
| 25 |
1 24
|
ax-mp |
⊢ 𝐴 ⊆ ( TC ‘ 𝐴 ) |
| 26 |
23 25
|
eqsstri |
⊢ ∪ { 𝐴 } ⊆ ( TC ‘ 𝐴 ) |
| 27 |
22 26
|
unssi |
⊢ ( ∪ ( TC ‘ 𝐴 ) ∪ ∪ { 𝐴 } ) ⊆ ( TC ‘ 𝐴 ) |
| 28 |
19 27
|
eqsstri |
⊢ ∪ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ⊆ ( TC ‘ 𝐴 ) |
| 29 |
|
ssun1 |
⊢ ( TC ‘ 𝐴 ) ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
| 30 |
28 29
|
sstri |
⊢ ∪ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
| 31 |
|
df-tr |
⊢ ( Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ↔ ∪ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) |
| 32 |
30 31
|
mpbir |
⊢ Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
| 33 |
|
fvex |
⊢ ( TC ‘ 𝐴 ) ∈ V |
| 34 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 35 |
33 34
|
unex |
⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∈ V |
| 36 |
|
eleq2 |
⊢ ( 𝑥 = ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) ) |
| 37 |
|
treq |
⊢ ( 𝑥 = ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) → ( Tr 𝑥 ↔ Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) ) |
| 38 |
36 37
|
anbi12d |
⊢ ( 𝑥 = ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) → ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∧ Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) ) ) |
| 39 |
35 38
|
elab |
⊢ ( ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∈ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ↔ ( 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∧ Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) ) |
| 40 |
18 32 39
|
mpbir2an |
⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∈ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
| 41 |
|
intss1 |
⊢ ( ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∈ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) |
| 42 |
40 41
|
ax-mp |
⊢ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
| 43 |
15 42
|
eqssi |
⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) = ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |