| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfindsg.1 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
tfindsg.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
tfindsg.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
| 4 |
|
tfindsg.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
| 5 |
|
tfindsg.5 |
⊢ ( 𝐵 ∈ On → 𝜓 ) |
| 6 |
|
tfindsg.6 |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
| 7 |
|
tfindsg.7 |
⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) |
| 8 |
|
sseq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ∅ ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ∅ ) ) |
| 10 |
|
eqeq2 |
⊢ ( 𝐵 = ∅ → ( 𝑥 = 𝐵 ↔ 𝑥 = ∅ ) ) |
| 11 |
10 1
|
biimtrrdi |
⊢ ( 𝐵 = ∅ → ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) ) |
| 12 |
11
|
imp |
⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( 𝜑 ↔ 𝜓 ) ) |
| 13 |
9 12
|
imbi12d |
⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 14 |
8
|
imbi1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜑 ) ) ) |
| 15 |
|
ss0 |
⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) |
| 16 |
15
|
con3i |
⊢ ( ¬ 𝐵 = ∅ → ¬ 𝐵 ⊆ ∅ ) |
| 17 |
16
|
pm2.21d |
⊢ ( ¬ 𝐵 = ∅ → ( 𝐵 ⊆ ∅ → ( 𝜑 ↔ 𝜓 ) ) ) |
| 18 |
17
|
pm5.74d |
⊢ ( ¬ 𝐵 = ∅ → ( ( 𝐵 ⊆ ∅ → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 19 |
14 18
|
sylan9bbr |
⊢ ( ( ¬ 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 20 |
13 19
|
pm2.61ian |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) ) |
| 22 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑦 ) ) |
| 23 |
22 2
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) ) |
| 25 |
|
sseq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ suc 𝑦 ) ) |
| 26 |
25 3
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 28 |
|
sseq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 29 |
28 4
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) |
| 30 |
29
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) ) |
| 31 |
5
|
a1d |
⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ ∅ → 𝜓 ) ) |
| 32 |
|
vex |
⊢ 𝑦 ∈ V |
| 33 |
32
|
sucex |
⊢ suc 𝑦 ∈ V |
| 34 |
33
|
eqvinc |
⊢ ( suc 𝑦 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) ) |
| 35 |
5 1
|
imbitrrid |
⊢ ( 𝑥 = 𝐵 → ( 𝐵 ∈ On → 𝜑 ) ) |
| 36 |
3
|
biimpd |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 → 𝜃 ) ) |
| 37 |
35 36
|
sylan9r |
⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) → ( 𝐵 ∈ On → 𝜃 ) ) |
| 38 |
37
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) → ( 𝐵 ∈ On → 𝜃 ) ) |
| 39 |
34 38
|
sylbi |
⊢ ( suc 𝑦 = 𝐵 → ( 𝐵 ∈ On → 𝜃 ) ) |
| 40 |
39
|
eqcoms |
⊢ ( 𝐵 = suc 𝑦 → ( 𝐵 ∈ On → 𝜃 ) ) |
| 41 |
40
|
imim2i |
⊢ ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( 𝐵 ⊆ suc 𝑦 → ( 𝐵 ∈ On → 𝜃 ) ) ) |
| 42 |
41
|
a1d |
⊢ ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → ( 𝐵 ∈ On → 𝜃 ) ) ) ) |
| 43 |
42
|
com4r |
⊢ ( 𝐵 ∈ On → ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 45 |
|
df-ne |
⊢ ( 𝐵 ≠ suc 𝑦 ↔ ¬ 𝐵 = suc 𝑦 ) |
| 46 |
45
|
anbi2i |
⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ↔ ( 𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦 ) ) |
| 47 |
|
annim |
⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦 ) ↔ ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) ) |
| 48 |
46 47
|
bitri |
⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ↔ ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) ) |
| 49 |
|
onsssuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ∈ suc 𝑦 ) ) |
| 50 |
|
onsuc |
⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) |
| 51 |
|
onelpss |
⊢ ( ( 𝐵 ∈ On ∧ suc 𝑦 ∈ On ) → ( 𝐵 ∈ suc 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 52 |
50 51
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ∈ suc 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 53 |
49 52
|
bitrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 54 |
53
|
ancoms |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 55 |
6
|
ex |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 → ( 𝜒 → 𝜃 ) ) ) |
| 56 |
55
|
a1ddd |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 → ( 𝜒 → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 57 |
56
|
a2d |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ 𝑦 → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 58 |
57
|
com23 |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 59 |
54 58
|
sylbird |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 60 |
48 59
|
biimtrrid |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 61 |
44 60
|
pm2.61d |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) |
| 62 |
61
|
ex |
⊢ ( 𝑦 ∈ On → ( 𝐵 ∈ On → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 63 |
62
|
a2d |
⊢ ( 𝑦 ∈ On → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ∈ On → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 64 |
|
pm2.27 |
⊢ ( 𝐵 ∈ On → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
| 65 |
64
|
ralimdv |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
| 66 |
65
|
ad2antlr |
⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
| 67 |
66 7
|
syld |
⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → 𝜑 ) ) |
| 68 |
67
|
exp31 |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → 𝜑 ) ) ) ) |
| 69 |
68
|
com3l |
⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → 𝜑 ) ) ) ) |
| 70 |
69
|
com4t |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ) ) |
| 71 |
21 24 27 30 31 63 70
|
tfinds |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) |
| 72 |
71
|
imp31 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → 𝜏 ) |