| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgbtwnconn.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tgbtwnconn.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | tgbtwnconn.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 4 |  | tgbtwnconn.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | tgbtwnconn.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | tgbtwnconn.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | tgbtwnconn.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 8 |  | tgbtwnconnln1.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 9 |  | tgbtwnconnln1.1 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 10 |  | tgbtwnconnln1.2 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 11 |  | tgbtwnconnln1.3 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 14 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 15 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 17 | 1 8 2 12 13 14 15 16 | btwncolg2 | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) )  →  ( 𝐴  ∈  ( 𝐶 𝐿 𝐷 )  ∨  𝐶  =  𝐷 ) ) | 
						
							| 18 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 19 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 20 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 22 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 24 | 1 22 2 18 21 20 19 23 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐷  ∈  ( 𝐶 𝐼 𝐴 ) ) | 
						
							| 25 | 1 8 2 18 19 20 21 24 | btwncolg3 | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) )  →  ( 𝐴  ∈  ( 𝐶 𝐿 𝐷 )  ∨  𝐶  =  𝐷 ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 9 10 11 | tgbtwnconn1 | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 27 | 17 25 26 | mpjaodan | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐶 𝐿 𝐷 )  ∨  𝐶  =  𝐷 ) ) |