| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tmsxps.p |
⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) |
| 2 |
|
tmsxps.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 3 |
|
tmsxps.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) |
| 4 |
|
tmsxpsmopn.j |
⊢ 𝐽 = ( MetOpen ‘ 𝑀 ) |
| 5 |
|
tmsxpsmopn.k |
⊢ 𝐾 = ( MetOpen ‘ 𝑁 ) |
| 6 |
|
tmsxpsmopn.l |
⊢ 𝐿 = ( MetOpen ‘ 𝑃 ) |
| 7 |
|
eqid |
⊢ ( toMetSp ‘ 𝑀 ) = ( toMetSp ‘ 𝑀 ) |
| 8 |
7
|
tmsxms |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
| 10 |
|
xmstps |
⊢ ( ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp → ( toMetSp ‘ 𝑀 ) ∈ TopSp ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → ( toMetSp ‘ 𝑀 ) ∈ TopSp ) |
| 12 |
|
eqid |
⊢ ( toMetSp ‘ 𝑁 ) = ( toMetSp ‘ 𝑁 ) |
| 13 |
12
|
tmsxms |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
| 15 |
|
xmstps |
⊢ ( ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp → ( toMetSp ‘ 𝑁 ) ∈ TopSp ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( toMetSp ‘ 𝑁 ) ∈ TopSp ) |
| 17 |
|
eqid |
⊢ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) = ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) |
| 18 |
|
eqid |
⊢ ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) = ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) |
| 19 |
|
eqid |
⊢ ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) = ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) |
| 20 |
|
eqid |
⊢ ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) |
| 21 |
17 18 19 20
|
xpstopn |
⊢ ( ( ( toMetSp ‘ 𝑀 ) ∈ TopSp ∧ ( toMetSp ‘ 𝑁 ) ∈ TopSp ) → ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ×t ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 22 |
11 16 21
|
syl2anc |
⊢ ( 𝜑 → ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ×t ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 23 |
17
|
xpsxms |
⊢ ( ( ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ∧ ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) → ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp ) |
| 24 |
9 14 23
|
syl2anc |
⊢ ( 𝜑 → ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp ) |
| 25 |
|
eqid |
⊢ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) |
| 26 |
1
|
reseq1i |
⊢ ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = ( ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
| 27 |
20 25 26
|
xmstopn |
⊢ ( ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp → ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( MetOpen ‘ ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ) ) |
| 28 |
24 27
|
syl |
⊢ ( 𝜑 → ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( MetOpen ‘ ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) |
| 30 |
|
eqid |
⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) |
| 31 |
17 29 30 9 14 1
|
xpsdsfn2 |
⊢ ( 𝜑 → 𝑃 Fn ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
| 32 |
|
fnresdm |
⊢ ( 𝑃 Fn ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = 𝑃 ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = 𝑃 ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ) = ( MetOpen ‘ 𝑃 ) ) |
| 35 |
28 34
|
eqtr2d |
⊢ ( 𝜑 → ( MetOpen ‘ 𝑃 ) = ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) |
| 36 |
6 35
|
eqtrid |
⊢ ( 𝜑 → 𝐿 = ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) |
| 37 |
7 4
|
tmstopn |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 38 |
2 37
|
syl |
⊢ ( 𝜑 → 𝐽 = ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 39 |
12 5
|
tmstopn |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 = ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 40 |
3 39
|
syl |
⊢ ( 𝜑 → 𝐾 = ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 41 |
38 40
|
oveq12d |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) = ( ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ×t ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 42 |
22 36 41
|
3eqtr4d |
⊢ ( 𝜑 → 𝐿 = ( 𝐽 ×t 𝐾 ) ) |