| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tnglvec.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
| 2 |
|
eqidd |
⊢ ( 𝑁 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 4 |
1 3
|
tngbas |
⊢ ( 𝑁 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 6 |
1 5
|
tngplusg |
⊢ ( 𝑁 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 7 |
6
|
oveqdr |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 8 |
|
eqidd |
⊢ ( 𝑁 ∈ 𝑉 → ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐺 ) ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐺 ) |
| 10 |
1 9
|
tngsca |
⊢ ( 𝑁 ∈ 𝑉 → ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝑇 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐺 ) ) = ( Base ‘ ( Scalar ‘ 𝐺 ) ) |
| 12 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝐺 ) |
| 13 |
1 12
|
tngvsca |
⊢ ( 𝑁 ∈ 𝑉 → ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑇 ) ) |
| 14 |
13
|
oveqdr |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) 𝑦 ) ) |
| 15 |
2 4 7 8 10 11 14
|
lvecpropd |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ LVec ↔ 𝑇 ∈ LVec ) ) |