| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tnglvec.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
| 2 |
|
eqidd |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 4 |
1 3
|
tngbas |
⊢ ( 𝑁 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 6 |
|
ssidd |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( Base ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 8 |
1 7
|
tngplusg |
⊢ ( 𝑁 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 10 |
9
|
oveqdr |
⊢ ( ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 11 |
|
lveclmod |
⊢ ( 𝐺 ∈ LVec → 𝐺 ∈ LMod ) |
| 12 |
|
eqid |
⊢ ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐺 ) |
| 13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝐺 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐺 ) ) = ( Base ‘ ( Scalar ‘ 𝐺 ) ) |
| 15 |
3 12 13 14
|
lmodvscl |
⊢ ( ( 𝐺 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 16 |
15
|
3expb |
⊢ ( ( 𝐺 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 17 |
11 16
|
sylan |
⊢ ( ( 𝐺 ∈ LVec ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 18 |
17
|
adantlr |
⊢ ( ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 19 |
1 13
|
tngvsca |
⊢ ( 𝑁 ∈ 𝑉 → ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑇 ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑇 ) ) |
| 21 |
20
|
oveqdr |
⊢ ( ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) 𝑦 ) ) |
| 22 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
| 23 |
|
eqidd |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( Base ‘ ( Scalar ‘ 𝐺 ) ) = ( Base ‘ ( Scalar ‘ 𝐺 ) ) ) |
| 24 |
1 12
|
tngsca |
⊢ ( 𝑁 ∈ 𝑉 → ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝑇 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝑇 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( Base ‘ ( Scalar ‘ 𝐺 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 27 |
25
|
fveq2d |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( +g ‘ ( Scalar ‘ 𝐺 ) ) = ( +g ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 28 |
27
|
oveqdr |
⊢ ( ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝐺 ) ) ) ) → ( 𝑥 ( +g ‘ ( Scalar ‘ 𝐺 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑇 ) ) 𝑦 ) ) |
| 29 |
|
simpl |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ LVec ) |
| 30 |
1
|
tnglvec |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ LVec ↔ 𝑇 ∈ LVec ) ) |
| 31 |
30
|
biimpac |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → 𝑇 ∈ LVec ) |
| 32 |
2 5 6 10 18 21 12 22 23 26 28 29 31
|
dimpropd |
⊢ ( ( 𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉 ) → ( dim ‘ 𝐺 ) = ( dim ‘ 𝑇 ) ) |