Step |
Hyp |
Ref |
Expression |
1 |
|
rrxdim.1 |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
2 |
1
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
3 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) |
5 |
|
eqid |
⊢ ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) |
6 |
3 4 5
|
tcphval |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) |
7 |
2 6
|
eqtrdi |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( dim ‘ 𝐻 ) = ( dim ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) ) |
9 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
10 |
9
|
simpri |
⊢ ℝfld ∈ DivRing |
11 |
|
eqid |
⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) |
12 |
11
|
frlmlvec |
⊢ ( ( ℝfld ∈ DivRing ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld freeLMod 𝐼 ) ∈ LVec ) |
13 |
10 12
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) ∈ LVec ) |
14 |
4
|
tcphex |
⊢ ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ∈ V |
15 |
|
eqid |
⊢ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) |
16 |
15
|
tngdim |
⊢ ( ( ( ℝfld freeLMod 𝐼 ) ∈ LVec ∧ ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ∈ V ) → ( dim ‘ ( ℝfld freeLMod 𝐼 ) ) = ( dim ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) ) |
17 |
13 14 16
|
sylancl |
⊢ ( 𝐼 ∈ 𝑉 → ( dim ‘ ( ℝfld freeLMod 𝐼 ) ) = ( dim ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) ) |
18 |
11
|
frlmdim |
⊢ ( ( ℝfld ∈ DivRing ∧ 𝐼 ∈ 𝑉 ) → ( dim ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) |
19 |
10 18
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( dim ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) |
20 |
8 17 19
|
3eqtr2d |
⊢ ( 𝐼 ∈ 𝑉 → ( dim ‘ 𝐻 ) = ( ♯ ‘ 𝐼 ) ) |