Metamath Proof Explorer


Theorem rrxdim

Description: Dimension of the generalized Euclidean space. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypothesis rrxdim.1 H=msup
Assertion rrxdim IVdimH=I

Proof

Step Hyp Ref Expression
1 rrxdim.1 H=msup
2 1 rrxval IVH=toCPreHilfldfreeLModI
3 eqid toCPreHilfldfreeLModI=toCPreHilfldfreeLModI
4 eqid BasefldfreeLModI=BasefldfreeLModI
5 eqid 𝑖fldfreeLModI=𝑖fldfreeLModI
6 3 4 5 tcphval toCPreHilfldfreeLModI=fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
7 2 6 eqtrdi IVH=fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
8 7 fveq2d IVdimH=dimfldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
9 resubdrg SubRingfldfldDivRing
10 9 simpri fldDivRing
11 eqid fldfreeLModI=fldfreeLModI
12 11 frlmlvec fldDivRingIVfldfreeLModILVec
13 10 12 mpan IVfldfreeLModILVec
14 4 tcphex xBasefldfreeLModIx𝑖fldfreeLModIxV
15 eqid fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx=fldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
16 15 tngdim fldfreeLModILVecxBasefldfreeLModIx𝑖fldfreeLModIxVdimfldfreeLModI=dimfldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
17 13 14 16 sylancl IVdimfldfreeLModI=dimfldfreeLModItoNrmGrpxBasefldfreeLModIx𝑖fldfreeLModIx
18 11 frlmdim fldDivRingIVdimfldfreeLModI=I
19 10 18 mpan IVdimfldfreeLModI=I
20 8 17 19 3eqtr2d IVdimH=I