| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matdim.a |
|
| 2 |
|
matdim.n |
|
| 3 |
|
simpr |
|
| 4 |
|
simpl |
|
| 5 |
|
xpfi |
|
| 6 |
4 4 5
|
syl2anc |
|
| 7 |
|
eqid |
|
| 8 |
7
|
frlmdim |
|
| 9 |
3 6 8
|
syl2anc |
|
| 10 |
1 7
|
matbas |
|
| 11 |
10
|
eqcomd |
|
| 12 |
|
eqidd |
|
| 13 |
|
ssidd |
|
| 14 |
1 7
|
matplusg |
|
| 15 |
14
|
oveqdr |
|
| 16 |
7
|
frlmlvec |
|
| 17 |
3 6 16
|
syl2anc |
|
| 18 |
|
lveclmod |
|
| 19 |
17 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simprl |
|
| 22 |
1 7
|
matsca |
|
| 23 |
22
|
fveq2d |
|
| 24 |
23
|
eqcomd |
|
| 25 |
24
|
adantr |
|
| 26 |
21 25
|
eleqtrd |
|
| 27 |
|
simprr |
|
| 28 |
11
|
adantr |
|
| 29 |
27 28
|
eleqtrd |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
30 31 32 33
|
lmodvscl |
|
| 35 |
20 26 29 34
|
syl3anc |
|
| 36 |
35 28
|
eleqtrrd |
|
| 37 |
1 7
|
matvsca |
|
| 38 |
37
|
oveqdr |
|
| 39 |
|
eqid |
|
| 40 |
|
eqidd |
|
| 41 |
22
|
fveq2d |
|
| 42 |
41
|
oveqdr |
|
| 43 |
|
drngring |
|
| 44 |
1
|
matlmod |
|
| 45 |
43 44
|
sylan2 |
|
| 46 |
1
|
matsca2 |
|
| 47 |
46 3
|
eqeltrrd |
|
| 48 |
39
|
islvec |
|
| 49 |
45 47 48
|
sylanbrc |
|
| 50 |
11 12 13 15 36 38 31 39 24 40 42 17 49
|
dimpropd |
|
| 51 |
|
hashxp |
|
| 52 |
4 4 51
|
syl2anc |
|
| 53 |
9 50 52
|
3eqtr3d |
|
| 54 |
2 2
|
oveq12i |
|
| 55 |
53 54
|
eqtr4di |
|