Step |
Hyp |
Ref |
Expression |
1 |
|
matdim.a |
|
2 |
|
matdim.n |
|
3 |
|
simpr |
|
4 |
|
simpl |
|
5 |
|
xpfi |
|
6 |
4 4 5
|
syl2anc |
|
7 |
|
eqid |
|
8 |
7
|
frlmdim |
|
9 |
3 6 8
|
syl2anc |
|
10 |
1 7
|
matbas |
|
11 |
10
|
eqcomd |
|
12 |
|
eqidd |
|
13 |
|
ssidd |
|
14 |
1 7
|
matplusg |
|
15 |
14
|
oveqdr |
|
16 |
7
|
frlmlvec |
|
17 |
3 6 16
|
syl2anc |
|
18 |
|
lveclmod |
|
19 |
17 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
|
simprl |
|
22 |
1 7
|
matsca |
|
23 |
22
|
fveq2d |
|
24 |
23
|
eqcomd |
|
25 |
24
|
adantr |
|
26 |
21 25
|
eleqtrd |
|
27 |
|
simprr |
|
28 |
11
|
adantr |
|
29 |
27 28
|
eleqtrd |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
30 31 32 33
|
lmodvscl |
|
35 |
20 26 29 34
|
syl3anc |
|
36 |
35 28
|
eleqtrrd |
|
37 |
1 7
|
matvsca |
|
38 |
37
|
oveqdr |
|
39 |
|
eqid |
|
40 |
|
eqidd |
|
41 |
22
|
fveq2d |
|
42 |
41
|
oveqdr |
|
43 |
|
drngring |
|
44 |
1
|
matlmod |
|
45 |
43 44
|
sylan2 |
|
46 |
1
|
matsca2 |
|
47 |
46 3
|
eqeltrrd |
|
48 |
39
|
islvec |
|
49 |
45 47 48
|
sylanbrc |
|
50 |
11 12 13 15 36 38 31 39 24 40 42 17 49
|
dimpropd |
|
51 |
|
hashxp |
|
52 |
4 4 51
|
syl2anc |
|
53 |
9 50 52
|
3eqtr3d |
|
54 |
2 2
|
oveq12i |
|
55 |
53 54
|
eqtr4di |
|