Description: Dimension of the space of square matrices. (Contributed by Thierry Arnoux, 20-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | matdim.a | |
|
matdim.n | |
||
Assertion | matdim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matdim.a | |
|
2 | matdim.n | |
|
3 | simpr | |
|
4 | simpl | |
|
5 | xpfi | |
|
6 | 4 4 5 | syl2anc | |
7 | eqid | |
|
8 | 7 | frlmdim | |
9 | 3 6 8 | syl2anc | |
10 | 1 7 | matbas | |
11 | 10 | eqcomd | |
12 | eqidd | |
|
13 | ssidd | |
|
14 | 1 7 | matplusg | |
15 | 14 | oveqdr | |
16 | 7 | frlmlvec | |
17 | 3 6 16 | syl2anc | |
18 | lveclmod | |
|
19 | 17 18 | syl | |
20 | 19 | adantr | |
21 | simprl | |
|
22 | 1 7 | matsca | |
23 | 22 | fveq2d | |
24 | 23 | eqcomd | |
25 | 24 | adantr | |
26 | 21 25 | eleqtrd | |
27 | simprr | |
|
28 | 11 | adantr | |
29 | 27 28 | eleqtrd | |
30 | eqid | |
|
31 | eqid | |
|
32 | eqid | |
|
33 | eqid | |
|
34 | 30 31 32 33 | lmodvscl | |
35 | 20 26 29 34 | syl3anc | |
36 | 35 28 | eleqtrrd | |
37 | 1 7 | matvsca | |
38 | 37 | oveqdr | |
39 | eqid | |
|
40 | eqidd | |
|
41 | 22 | fveq2d | |
42 | 41 | oveqdr | |
43 | drngring | |
|
44 | 1 | matlmod | |
45 | 43 44 | sylan2 | |
46 | 1 | matsca2 | |
47 | 46 3 | eqeltrrd | |
48 | 39 | islvec | |
49 | 45 47 48 | sylanbrc | |
50 | 11 12 13 15 36 38 31 39 24 40 42 17 49 | dimpropd | |
51 | hashxp | |
|
52 | 4 4 51 | syl2anc | |
53 | 9 50 52 | 3eqtr3d | |
54 | 2 2 | oveq12i | |
55 | 53 54 | eqtr4di | |