Step |
Hyp |
Ref |
Expression |
1 |
|
matdim.a |
|- A = ( I Mat R ) |
2 |
|
matdim.n |
|- N = ( # ` I ) |
3 |
|
simpr |
|- ( ( I e. Fin /\ R e. DivRing ) -> R e. DivRing ) |
4 |
|
simpl |
|- ( ( I e. Fin /\ R e. DivRing ) -> I e. Fin ) |
5 |
|
xpfi |
|- ( ( I e. Fin /\ I e. Fin ) -> ( I X. I ) e. Fin ) |
6 |
4 4 5
|
syl2anc |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( I X. I ) e. Fin ) |
7 |
|
eqid |
|- ( R freeLMod ( I X. I ) ) = ( R freeLMod ( I X. I ) ) |
8 |
7
|
frlmdim |
|- ( ( R e. DivRing /\ ( I X. I ) e. Fin ) -> ( dim ` ( R freeLMod ( I X. I ) ) ) = ( # ` ( I X. I ) ) ) |
9 |
3 6 8
|
syl2anc |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( dim ` ( R freeLMod ( I X. I ) ) ) = ( # ` ( I X. I ) ) ) |
10 |
1 7
|
matbas |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( Base ` ( R freeLMod ( I X. I ) ) ) = ( Base ` A ) ) |
11 |
10
|
eqcomd |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( Base ` A ) = ( Base ` ( R freeLMod ( I X. I ) ) ) ) |
12 |
|
eqidd |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( Base ` A ) = ( Base ` A ) ) |
13 |
|
ssidd |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( Base ` A ) C_ ( Base ` A ) ) |
14 |
1 7
|
matplusg |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( +g ` ( R freeLMod ( I X. I ) ) ) = ( +g ` A ) ) |
15 |
14
|
oveqdr |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x ( +g ` ( R freeLMod ( I X. I ) ) ) y ) = ( x ( +g ` A ) y ) ) |
16 |
7
|
frlmlvec |
|- ( ( R e. DivRing /\ ( I X. I ) e. Fin ) -> ( R freeLMod ( I X. I ) ) e. LVec ) |
17 |
3 6 16
|
syl2anc |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( R freeLMod ( I X. I ) ) e. LVec ) |
18 |
|
lveclmod |
|- ( ( R freeLMod ( I X. I ) ) e. LVec -> ( R freeLMod ( I X. I ) ) e. LMod ) |
19 |
17 18
|
syl |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( R freeLMod ( I X. I ) ) e. LMod ) |
20 |
19
|
adantr |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( R freeLMod ( I X. I ) ) e. LMod ) |
21 |
|
simprl |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` ( Scalar ` A ) ) ) |
22 |
1 7
|
matsca |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( Scalar ` ( R freeLMod ( I X. I ) ) ) = ( Scalar ` A ) ) |
23 |
22
|
fveq2d |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( Base ` ( Scalar ` ( R freeLMod ( I X. I ) ) ) ) = ( Base ` ( Scalar ` A ) ) ) |
24 |
23
|
eqcomd |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` ( R freeLMod ( I X. I ) ) ) ) ) |
25 |
24
|
adantr |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` ( R freeLMod ( I X. I ) ) ) ) ) |
26 |
21 25
|
eleqtrd |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` ( Scalar ` ( R freeLMod ( I X. I ) ) ) ) ) |
27 |
|
simprr |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` A ) ) |
28 |
11
|
adantr |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( Base ` A ) = ( Base ` ( R freeLMod ( I X. I ) ) ) ) |
29 |
27 28
|
eleqtrd |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` ( R freeLMod ( I X. I ) ) ) ) |
30 |
|
eqid |
|- ( Base ` ( R freeLMod ( I X. I ) ) ) = ( Base ` ( R freeLMod ( I X. I ) ) ) |
31 |
|
eqid |
|- ( Scalar ` ( R freeLMod ( I X. I ) ) ) = ( Scalar ` ( R freeLMod ( I X. I ) ) ) |
32 |
|
eqid |
|- ( .s ` ( R freeLMod ( I X. I ) ) ) = ( .s ` ( R freeLMod ( I X. I ) ) ) |
33 |
|
eqid |
|- ( Base ` ( Scalar ` ( R freeLMod ( I X. I ) ) ) ) = ( Base ` ( Scalar ` ( R freeLMod ( I X. I ) ) ) ) |
34 |
30 31 32 33
|
lmodvscl |
|- ( ( ( R freeLMod ( I X. I ) ) e. LMod /\ x e. ( Base ` ( Scalar ` ( R freeLMod ( I X. I ) ) ) ) /\ y e. ( Base ` ( R freeLMod ( I X. I ) ) ) ) -> ( x ( .s ` ( R freeLMod ( I X. I ) ) ) y ) e. ( Base ` ( R freeLMod ( I X. I ) ) ) ) |
35 |
20 26 29 34
|
syl3anc |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( x ( .s ` ( R freeLMod ( I X. I ) ) ) y ) e. ( Base ` ( R freeLMod ( I X. I ) ) ) ) |
36 |
35 28
|
eleqtrrd |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( x ( .s ` ( R freeLMod ( I X. I ) ) ) y ) e. ( Base ` A ) ) |
37 |
1 7
|
matvsca |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( .s ` ( R freeLMod ( I X. I ) ) ) = ( .s ` A ) ) |
38 |
37
|
oveqdr |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( x ( .s ` ( R freeLMod ( I X. I ) ) ) y ) = ( x ( .s ` A ) y ) ) |
39 |
|
eqid |
|- ( Scalar ` A ) = ( Scalar ` A ) |
40 |
|
eqidd |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) ) |
41 |
22
|
fveq2d |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( +g ` ( Scalar ` ( R freeLMod ( I X. I ) ) ) ) = ( +g ` ( Scalar ` A ) ) ) |
42 |
41
|
oveqdr |
|- ( ( ( I e. Fin /\ R e. DivRing ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` ( Scalar ` A ) ) ) ) -> ( x ( +g ` ( Scalar ` ( R freeLMod ( I X. I ) ) ) ) y ) = ( x ( +g ` ( Scalar ` A ) ) y ) ) |
43 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
44 |
1
|
matlmod |
|- ( ( I e. Fin /\ R e. Ring ) -> A e. LMod ) |
45 |
43 44
|
sylan2 |
|- ( ( I e. Fin /\ R e. DivRing ) -> A e. LMod ) |
46 |
1
|
matsca2 |
|- ( ( I e. Fin /\ R e. DivRing ) -> R = ( Scalar ` A ) ) |
47 |
46 3
|
eqeltrrd |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( Scalar ` A ) e. DivRing ) |
48 |
39
|
islvec |
|- ( A e. LVec <-> ( A e. LMod /\ ( Scalar ` A ) e. DivRing ) ) |
49 |
45 47 48
|
sylanbrc |
|- ( ( I e. Fin /\ R e. DivRing ) -> A e. LVec ) |
50 |
11 12 13 15 36 38 31 39 24 40 42 17 49
|
dimpropd |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( dim ` ( R freeLMod ( I X. I ) ) ) = ( dim ` A ) ) |
51 |
|
hashxp |
|- ( ( I e. Fin /\ I e. Fin ) -> ( # ` ( I X. I ) ) = ( ( # ` I ) x. ( # ` I ) ) ) |
52 |
4 4 51
|
syl2anc |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( # ` ( I X. I ) ) = ( ( # ` I ) x. ( # ` I ) ) ) |
53 |
9 50 52
|
3eqtr3d |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( dim ` A ) = ( ( # ` I ) x. ( # ` I ) ) ) |
54 |
2 2
|
oveq12i |
|- ( N x. N ) = ( ( # ` I ) x. ( # ` I ) ) |
55 |
53 54
|
eqtr4di |
|- ( ( I e. Fin /\ R e. DivRing ) -> ( dim ` A ) = ( N x. N ) ) |