Metamath Proof Explorer


Theorem lbslsat

Description: A nonzero vector X is a basis of a line spanned by the singleton X . Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms and for example lsatlspsn . (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypotheses lbslsat.v V=BaseW
lbslsat.n N=LSpanW
lbslsat.z 0˙=0W
lbslsat.y Y=W𝑠NX
Assertion lbslsat WLVecXVX0˙XLBasisY

Proof

Step Hyp Ref Expression
1 lbslsat.v V=BaseW
2 lbslsat.n N=LSpanW
3 lbslsat.z 0˙=0W
4 lbslsat.y Y=W𝑠NX
5 lveclmod WLVecWLMod
6 5 adantr WLVecXVWLMod
7 snssi XVXV
8 7 adantl WLVecXVXV
9 eqid LSubSpW=LSubSpW
10 1 9 2 lspcl WLModXVNXLSubSpW
11 6 8 10 syl2anc WLVecXVNXLSubSpW
12 4 9 lsslvec WLVecNXLSubSpWYLVec
13 11 12 syldan WLVecXVYLVec
14 13 3adant3 WLVecXVX0˙YLVec
15 1 2 lspssid WLModXVXNX
16 6 8 15 syl2anc WLVecXVXNX
17 1 2 lspssv WLModXVNXV
18 6 8 17 syl2anc WLVecXVNXV
19 4 1 ressbas2 NXVNX=BaseY
20 18 19 syl WLVecXVNX=BaseY
21 16 20 sseqtrd WLVecXVXBaseY
22 21 3adant3 WLVecXVX0˙XBaseY
23 6 3adant3 WLVecXVX0˙WLMod
24 11 3adant3 WLVecXVX0˙NXLSubSpW
25 16 3adant3 WLVecXVX0˙XNX
26 eqid LSpanY=LSpanY
27 4 2 26 9 lsslsp WLModNXLSubSpWXNXNX=LSpanYX
28 23 24 25 27 syl3anc WLVecXVX0˙NX=LSpanYX
29 20 3adant3 WLVecXVX0˙NX=BaseY
30 28 29 eqtr3d WLVecXVX0˙LSpanYX=BaseY
31 difid XX=
32 31 fveq2i LSpanYXX=LSpanY
33 32 a1i WLVecXVLSpanYXX=LSpanY
34 33 eleq2d WLVecXVXLSpanYXXXLSpanY
35 34 biimpa WLVecXVXLSpanYXXXLSpanY
36 lveclmod YLVecYLMod
37 eqid 0Y=0Y
38 37 26 lsp0 YLModLSpanY=0Y
39 13 36 38 3syl WLVecXVLSpanY=0Y
40 39 adantr WLVecXVXLSpanYXXLSpanY=0Y
41 35 40 eleqtrd WLVecXVXLSpanYXXX0Y
42 elsni X0YX=0Y
43 41 42 syl WLVecXVXLSpanYXXX=0Y
44 lmodgrp WLModWGrp
45 grpmnd WGrpWMnd
46 6 44 45 3syl WLVecXVWMnd
47 3 1 2 0ellsp WLModXV0˙NX
48 6 8 47 syl2anc WLVecXV0˙NX
49 4 1 3 ress0g WMnd0˙NXNXV0˙=0Y
50 46 48 18 49 syl3anc WLVecXV0˙=0Y
51 50 adantr WLVecXVXLSpanYXX0˙=0Y
52 43 51 eqtr4d WLVecXVXLSpanYXXX=0˙
53 52 ex WLVecXVXLSpanYXXX=0˙
54 53 necon3ad WLVecXVX0˙¬XLSpanYXX
55 54 3impia WLVecXVX0˙¬XLSpanYXX
56 id x=Xx=X
57 sneq x=Xx=X
58 57 difeq2d x=XXx=XX
59 58 fveq2d x=XLSpanYXx=LSpanYXX
60 56 59 eleq12d x=XxLSpanYXxXLSpanYXX
61 60 notbid x=X¬xLSpanYXx¬XLSpanYXX
62 61 ralsng XVxX¬xLSpanYXx¬XLSpanYXX
63 62 3ad2ant2 WLVecXVX0˙xX¬xLSpanYXx¬XLSpanYXX
64 55 63 mpbird WLVecXVX0˙xX¬xLSpanYXx
65 eqid BaseY=BaseY
66 eqid LBasisY=LBasisY
67 65 66 26 islbs2 YLVecXLBasisYXBaseYLSpanYX=BaseYxX¬xLSpanYXx
68 67 biimpar YLVecXBaseYLSpanYX=BaseYxX¬xLSpanYXxXLBasisY
69 14 22 30 64 68 syl13anc WLVecXVX0˙XLBasisY