Step |
Hyp |
Ref |
Expression |
1 |
|
lbslsat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lbslsat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lbslsat.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lbslsat.y |
⊢ 𝑌 = ( 𝑊 ↾s ( 𝑁 ‘ { 𝑋 } ) ) |
5 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
7 |
|
snssi |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑋 } ⊆ 𝑉 ) |
8 |
7
|
adantl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → { 𝑋 } ⊆ 𝑉 ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
10 |
1 9 2
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
11 |
6 8 10
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
12 |
4 9
|
lsslvec |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑌 ∈ LVec ) |
13 |
11 12
|
syldan |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 𝑌 ∈ LVec ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ LVec ) |
15 |
1 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → { 𝑋 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
16 |
6 8 15
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → { 𝑋 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
17 |
1 2
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ) |
18 |
6 8 17
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ) |
19 |
4 1
|
ressbas2 |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 → ( 𝑁 ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ) |
21 |
16 20
|
sseqtrd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → { 𝑋 } ⊆ ( Base ‘ 𝑌 ) ) |
22 |
21
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → { 𝑋 } ⊆ ( Base ‘ 𝑌 ) ) |
23 |
6
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LMod ) |
24 |
11
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
25 |
16
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → { 𝑋 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
26 |
|
eqid |
⊢ ( LSpan ‘ 𝑌 ) = ( LSpan ‘ 𝑌 ) |
27 |
4 2 26 9
|
lsslsp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ { 𝑋 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) ) |
28 |
23 24 25 27
|
syl3anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) ) |
29 |
20
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ) |
30 |
28 29
|
eqtr3d |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ) |
31 |
|
difid |
⊢ ( { 𝑋 } ∖ { 𝑋 } ) = ∅ |
32 |
31
|
fveq2i |
⊢ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) = ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) |
33 |
32
|
a1i |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) = ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) ) |
34 |
33
|
eleq2d |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ↔ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) ) ) |
35 |
34
|
biimpa |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) ) |
36 |
|
lveclmod |
⊢ ( 𝑌 ∈ LVec → 𝑌 ∈ LMod ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
38 |
37 26
|
lsp0 |
⊢ ( 𝑌 ∈ LMod → ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) = { ( 0g ‘ 𝑌 ) } ) |
39 |
13 36 38
|
3syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) = { ( 0g ‘ 𝑌 ) } ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) = { ( 0g ‘ 𝑌 ) } ) |
41 |
35 40
|
eleqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 𝑋 ∈ { ( 0g ‘ 𝑌 ) } ) |
42 |
|
elsni |
⊢ ( 𝑋 ∈ { ( 0g ‘ 𝑌 ) } → 𝑋 = ( 0g ‘ 𝑌 ) ) |
43 |
41 42
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 𝑋 = ( 0g ‘ 𝑌 ) ) |
44 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
45 |
|
grpmnd |
⊢ ( 𝑊 ∈ Grp → 𝑊 ∈ Mnd ) |
46 |
6 44 45
|
3syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ Mnd ) |
47 |
3 1 2
|
0ellsp |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → 0 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
48 |
6 8 47
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 0 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
49 |
4 1 3
|
ress0g |
⊢ ( ( 𝑊 ∈ Mnd ∧ 0 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ) → 0 = ( 0g ‘ 𝑌 ) ) |
50 |
46 48 18 49
|
syl3anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 0 = ( 0g ‘ 𝑌 ) ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 0 = ( 0g ‘ 𝑌 ) ) |
52 |
43 51
|
eqtr4d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 𝑋 = 0 ) |
53 |
52
|
ex |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) → 𝑋 = 0 ) ) |
54 |
53
|
necon3ad |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ≠ 0 → ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
55 |
54
|
3impia |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) |
56 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
57 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
58 |
57
|
difeq2d |
⊢ ( 𝑥 = 𝑋 → ( { 𝑋 } ∖ { 𝑥 } ) = ( { 𝑋 } ∖ { 𝑋 } ) ) |
59 |
58
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) = ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) |
60 |
56 59
|
eleq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
61 |
60
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
62 |
61
|
ralsng |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
63 |
62
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
64 |
55 63
|
mpbird |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ) |
65 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
66 |
|
eqid |
⊢ ( LBasis ‘ 𝑌 ) = ( LBasis ‘ 𝑌 ) |
67 |
65 66 26
|
islbs2 |
⊢ ( 𝑌 ∈ LVec → ( { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) ↔ ( { 𝑋 } ⊆ ( Base ‘ 𝑌 ) ∧ ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ) ) ) |
68 |
67
|
biimpar |
⊢ ( ( 𝑌 ∈ LVec ∧ ( { 𝑋 } ⊆ ( Base ‘ 𝑌 ) ∧ ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ) ) → { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) ) |
69 |
14 22 30 64 68
|
syl13anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) ) |