Step |
Hyp |
Ref |
Expression |
1 |
|
lbslsat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lbslsat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lbslsat.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lbslsat.y |
⊢ 𝑌 = ( 𝑊 ↾s ( 𝑁 ‘ { 𝑋 } ) ) |
5 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LVec ) |
6 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LMod ) |
8 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉 ) |
9 |
8
|
snssd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → { 𝑋 } ⊆ 𝑉 ) |
10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
11 |
1 10 2
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
12 |
7 9 11
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
13 |
4 10
|
lsslvec |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑌 ∈ LVec ) |
14 |
5 12 13
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ LVec ) |
15 |
1 2 3 4
|
lbslsat |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) ) |
16 |
|
eqid |
⊢ ( LBasis ‘ 𝑌 ) = ( LBasis ‘ 𝑌 ) |
17 |
16
|
dimval |
⊢ ( ( 𝑌 ∈ LVec ∧ { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) ) → ( dim ‘ 𝑌 ) = ( ♯ ‘ { 𝑋 } ) ) |
18 |
14 15 17
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( dim ‘ 𝑌 ) = ( ♯ ‘ { 𝑋 } ) ) |
19 |
|
hashsng |
⊢ ( 𝑋 ∈ 𝑉 → ( ♯ ‘ { 𝑋 } ) = 1 ) |
20 |
8 19
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ♯ ‘ { 𝑋 } ) = 1 ) |
21 |
18 20
|
eqtrd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( dim ‘ 𝑌 ) = 1 ) |