Metamath Proof Explorer


Theorem lsatdim

Description: A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypotheses lbslsat.v 𝑉 = ( Base ‘ 𝑊 )
lbslsat.n 𝑁 = ( LSpan ‘ 𝑊 )
lbslsat.z 0 = ( 0g𝑊 )
lbslsat.y 𝑌 = ( 𝑊s ( 𝑁 ‘ { 𝑋 } ) )
Assertion lsatdim ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ( dim ‘ 𝑌 ) = 1 )

Proof

Step Hyp Ref Expression
1 lbslsat.v 𝑉 = ( Base ‘ 𝑊 )
2 lbslsat.n 𝑁 = ( LSpan ‘ 𝑊 )
3 lbslsat.z 0 = ( 0g𝑊 )
4 lbslsat.y 𝑌 = ( 𝑊s ( 𝑁 ‘ { 𝑋 } ) )
5 simp1 ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑊 ∈ LVec )
6 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
7 5 6 syl ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑊 ∈ LMod )
8 simp2 ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑋𝑉 )
9 8 snssd ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → { 𝑋 } ⊆ 𝑉 )
10 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
11 1 10 2 lspcl ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) )
12 7 9 11 syl2anc ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) )
13 4 10 lsslvec ( ( 𝑊 ∈ LVec ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑌 ∈ LVec )
14 5 12 13 syl2anc ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑌 ∈ LVec )
15 1 2 3 4 lbslsat ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) )
16 eqid ( LBasis ‘ 𝑌 ) = ( LBasis ‘ 𝑌 )
17 16 dimval ( ( 𝑌 ∈ LVec ∧ { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) ) → ( dim ‘ 𝑌 ) = ( ♯ ‘ { 𝑋 } ) )
18 14 15 17 syl2anc ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ( dim ‘ 𝑌 ) = ( ♯ ‘ { 𝑋 } ) )
19 hashsng ( 𝑋𝑉 → ( ♯ ‘ { 𝑋 } ) = 1 )
20 8 19 syl ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ( ♯ ‘ { 𝑋 } ) = 1 )
21 18 20 eqtrd ( ( 𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ( dim ‘ 𝑌 ) = 1 )