Metamath Proof Explorer


Theorem drngdimgt0

Description: The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion drngdimgt0 ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 0 < ( dim ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 1m1e0 ( 1 − 1 ) = 0
2 simpl ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 𝐹 ∈ LVec )
3 simpr ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 𝐹 ∈ DivRing )
4 drngring ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring )
5 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
6 eqid ( 1r𝐹 ) = ( 1r𝐹 )
7 5 6 ringidcl ( 𝐹 ∈ Ring → ( 1r𝐹 ) ∈ ( Base ‘ 𝐹 ) )
8 3 4 7 3syl ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( 1r𝐹 ) ∈ ( Base ‘ 𝐹 ) )
9 eqid ( 0g𝐹 ) = ( 0g𝐹 )
10 9 6 drngunz ( 𝐹 ∈ DivRing → ( 1r𝐹 ) ≠ ( 0g𝐹 ) )
11 10 adantl ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( 1r𝐹 ) ≠ ( 0g𝐹 ) )
12 eqid ( LSpan ‘ 𝐹 ) = ( LSpan ‘ 𝐹 )
13 eqid ( 𝐹s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) ) = ( 𝐹s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) )
14 5 12 9 13 lsatdim ( ( 𝐹 ∈ LVec ∧ ( 1r𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 1r𝐹 ) ≠ ( 0g𝐹 ) ) → ( dim ‘ ( 𝐹s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) ) ) = 1 )
15 2 8 11 14 syl3anc ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( dim ‘ ( 𝐹s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) ) ) = 1 )
16 lveclmod ( 𝐹 ∈ LVec → 𝐹 ∈ LMod )
17 16 adantr ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 𝐹 ∈ LMod )
18 8 snssd ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → { ( 1r𝐹 ) } ⊆ ( Base ‘ 𝐹 ) )
19 eqid ( LSubSp ‘ 𝐹 ) = ( LSubSp ‘ 𝐹 )
20 5 19 12 lspcl ( ( 𝐹 ∈ LMod ∧ { ( 1r𝐹 ) } ⊆ ( Base ‘ 𝐹 ) ) → ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) ∈ ( LSubSp ‘ 𝐹 ) )
21 17 18 20 syl2anc ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) ∈ ( LSubSp ‘ 𝐹 ) )
22 13 lssdimle ( ( 𝐹 ∈ LVec ∧ ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) ∈ ( LSubSp ‘ 𝐹 ) ) → ( dim ‘ ( 𝐹s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) ) ) ≤ ( dim ‘ 𝐹 ) )
23 2 21 22 syl2anc ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( dim ‘ ( 𝐹s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r𝐹 ) } ) ) ) ≤ ( dim ‘ 𝐹 ) )
24 15 23 eqbrtrrd ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 1 ≤ ( dim ‘ 𝐹 ) )
25 1nn0 1 ∈ ℕ0
26 dimcl ( 𝐹 ∈ LVec → ( dim ‘ 𝐹 ) ∈ ℕ0* )
27 26 adantr ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( dim ‘ 𝐹 ) ∈ ℕ0* )
28 xnn0lem1lt ( ( 1 ∈ ℕ0 ∧ ( dim ‘ 𝐹 ) ∈ ℕ0* ) → ( 1 ≤ ( dim ‘ 𝐹 ) ↔ ( 1 − 1 ) < ( dim ‘ 𝐹 ) ) )
29 25 27 28 sylancr ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( 1 ≤ ( dim ‘ 𝐹 ) ↔ ( 1 − 1 ) < ( dim ‘ 𝐹 ) ) )
30 24 29 mpbid ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( 1 − 1 ) < ( dim ‘ 𝐹 ) )
31 1 30 eqbrtrrid ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 0 < ( dim ‘ 𝐹 ) )