Step |
Hyp |
Ref |
Expression |
1 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
2 |
|
simpl |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 𝐹 ∈ LVec ) |
3 |
|
simpr |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 𝐹 ∈ DivRing ) |
4 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
6 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
7 |
5 6
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
8 |
3 4 7
|
3syl |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
10 |
9 6
|
drngunz |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝐹 ) ≠ ( 0g ‘ 𝐹 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( 1r ‘ 𝐹 ) ≠ ( 0g ‘ 𝐹 ) ) |
12 |
|
eqid |
⊢ ( LSpan ‘ 𝐹 ) = ( LSpan ‘ 𝐹 ) |
13 |
|
eqid |
⊢ ( 𝐹 ↾s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) ) = ( 𝐹 ↾s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) ) |
14 |
5 12 9 13
|
lsatdim |
⊢ ( ( 𝐹 ∈ LVec ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝐹 ) ≠ ( 0g ‘ 𝐹 ) ) → ( dim ‘ ( 𝐹 ↾s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) ) ) = 1 ) |
15 |
2 8 11 14
|
syl3anc |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( dim ‘ ( 𝐹 ↾s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) ) ) = 1 ) |
16 |
|
lveclmod |
⊢ ( 𝐹 ∈ LVec → 𝐹 ∈ LMod ) |
17 |
16
|
adantr |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 𝐹 ∈ LMod ) |
18 |
8
|
snssd |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → { ( 1r ‘ 𝐹 ) } ⊆ ( Base ‘ 𝐹 ) ) |
19 |
|
eqid |
⊢ ( LSubSp ‘ 𝐹 ) = ( LSubSp ‘ 𝐹 ) |
20 |
5 19 12
|
lspcl |
⊢ ( ( 𝐹 ∈ LMod ∧ { ( 1r ‘ 𝐹 ) } ⊆ ( Base ‘ 𝐹 ) ) → ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) ∈ ( LSubSp ‘ 𝐹 ) ) |
21 |
17 18 20
|
syl2anc |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) ∈ ( LSubSp ‘ 𝐹 ) ) |
22 |
13
|
lssdimle |
⊢ ( ( 𝐹 ∈ LVec ∧ ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) ∈ ( LSubSp ‘ 𝐹 ) ) → ( dim ‘ ( 𝐹 ↾s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) ) ) ≤ ( dim ‘ 𝐹 ) ) |
23 |
2 21 22
|
syl2anc |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( dim ‘ ( 𝐹 ↾s ( ( LSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) ) ) ≤ ( dim ‘ 𝐹 ) ) |
24 |
15 23
|
eqbrtrrd |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 1 ≤ ( dim ‘ 𝐹 ) ) |
25 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
26 |
|
dimcl |
⊢ ( 𝐹 ∈ LVec → ( dim ‘ 𝐹 ) ∈ ℕ0* ) |
27 |
26
|
adantr |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( dim ‘ 𝐹 ) ∈ ℕ0* ) |
28 |
|
xnn0lem1lt |
⊢ ( ( 1 ∈ ℕ0 ∧ ( dim ‘ 𝐹 ) ∈ ℕ0* ) → ( 1 ≤ ( dim ‘ 𝐹 ) ↔ ( 1 − 1 ) < ( dim ‘ 𝐹 ) ) ) |
29 |
25 27 28
|
sylancr |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( 1 ≤ ( dim ‘ 𝐹 ) ↔ ( 1 − 1 ) < ( dim ‘ 𝐹 ) ) ) |
30 |
24 29
|
mpbid |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → ( 1 − 1 ) < ( dim ‘ 𝐹 ) ) |
31 |
1 30
|
eqbrtrrid |
⊢ ( ( 𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing ) → 0 < ( dim ‘ 𝐹 ) ) |