Step |
Hyp |
Ref |
Expression |
1 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
2 |
|
simpl |
|- ( ( F e. LVec /\ F e. DivRing ) -> F e. LVec ) |
3 |
|
simpr |
|- ( ( F e. LVec /\ F e. DivRing ) -> F e. DivRing ) |
4 |
|
drngring |
|- ( F e. DivRing -> F e. Ring ) |
5 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
6 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
7 |
5 6
|
ringidcl |
|- ( F e. Ring -> ( 1r ` F ) e. ( Base ` F ) ) |
8 |
3 4 7
|
3syl |
|- ( ( F e. LVec /\ F e. DivRing ) -> ( 1r ` F ) e. ( Base ` F ) ) |
9 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
10 |
9 6
|
drngunz |
|- ( F e. DivRing -> ( 1r ` F ) =/= ( 0g ` F ) ) |
11 |
10
|
adantl |
|- ( ( F e. LVec /\ F e. DivRing ) -> ( 1r ` F ) =/= ( 0g ` F ) ) |
12 |
|
eqid |
|- ( LSpan ` F ) = ( LSpan ` F ) |
13 |
|
eqid |
|- ( F |`s ( ( LSpan ` F ) ` { ( 1r ` F ) } ) ) = ( F |`s ( ( LSpan ` F ) ` { ( 1r ` F ) } ) ) |
14 |
5 12 9 13
|
lsatdim |
|- ( ( F e. LVec /\ ( 1r ` F ) e. ( Base ` F ) /\ ( 1r ` F ) =/= ( 0g ` F ) ) -> ( dim ` ( F |`s ( ( LSpan ` F ) ` { ( 1r ` F ) } ) ) ) = 1 ) |
15 |
2 8 11 14
|
syl3anc |
|- ( ( F e. LVec /\ F e. DivRing ) -> ( dim ` ( F |`s ( ( LSpan ` F ) ` { ( 1r ` F ) } ) ) ) = 1 ) |
16 |
|
lveclmod |
|- ( F e. LVec -> F e. LMod ) |
17 |
16
|
adantr |
|- ( ( F e. LVec /\ F e. DivRing ) -> F e. LMod ) |
18 |
8
|
snssd |
|- ( ( F e. LVec /\ F e. DivRing ) -> { ( 1r ` F ) } C_ ( Base ` F ) ) |
19 |
|
eqid |
|- ( LSubSp ` F ) = ( LSubSp ` F ) |
20 |
5 19 12
|
lspcl |
|- ( ( F e. LMod /\ { ( 1r ` F ) } C_ ( Base ` F ) ) -> ( ( LSpan ` F ) ` { ( 1r ` F ) } ) e. ( LSubSp ` F ) ) |
21 |
17 18 20
|
syl2anc |
|- ( ( F e. LVec /\ F e. DivRing ) -> ( ( LSpan ` F ) ` { ( 1r ` F ) } ) e. ( LSubSp ` F ) ) |
22 |
13
|
lssdimle |
|- ( ( F e. LVec /\ ( ( LSpan ` F ) ` { ( 1r ` F ) } ) e. ( LSubSp ` F ) ) -> ( dim ` ( F |`s ( ( LSpan ` F ) ` { ( 1r ` F ) } ) ) ) <_ ( dim ` F ) ) |
23 |
2 21 22
|
syl2anc |
|- ( ( F e. LVec /\ F e. DivRing ) -> ( dim ` ( F |`s ( ( LSpan ` F ) ` { ( 1r ` F ) } ) ) ) <_ ( dim ` F ) ) |
24 |
15 23
|
eqbrtrrd |
|- ( ( F e. LVec /\ F e. DivRing ) -> 1 <_ ( dim ` F ) ) |
25 |
|
1nn0 |
|- 1 e. NN0 |
26 |
|
dimcl |
|- ( F e. LVec -> ( dim ` F ) e. NN0* ) |
27 |
26
|
adantr |
|- ( ( F e. LVec /\ F e. DivRing ) -> ( dim ` F ) e. NN0* ) |
28 |
|
xnn0lem1lt |
|- ( ( 1 e. NN0 /\ ( dim ` F ) e. NN0* ) -> ( 1 <_ ( dim ` F ) <-> ( 1 - 1 ) < ( dim ` F ) ) ) |
29 |
25 27 28
|
sylancr |
|- ( ( F e. LVec /\ F e. DivRing ) -> ( 1 <_ ( dim ` F ) <-> ( 1 - 1 ) < ( dim ` F ) ) ) |
30 |
24 29
|
mpbid |
|- ( ( F e. LVec /\ F e. DivRing ) -> ( 1 - 1 ) < ( dim ` F ) ) |
31 |
1 30
|
eqbrtrrid |
|- ( ( F e. LVec /\ F e. DivRing ) -> 0 < ( dim ` F ) ) |