| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lbslsat.v |
|- V = ( Base ` W ) |
| 2 |
|
lbslsat.n |
|- N = ( LSpan ` W ) |
| 3 |
|
lbslsat.z |
|- .0. = ( 0g ` W ) |
| 4 |
|
lbslsat.y |
|- Y = ( W |`s ( N ` { X } ) ) |
| 5 |
|
simp1 |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> W e. LVec ) |
| 6 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 7 |
5 6
|
syl |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> W e. LMod ) |
| 8 |
|
simp2 |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> X e. V ) |
| 9 |
8
|
snssd |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> { X } C_ V ) |
| 10 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 11 |
1 10 2
|
lspcl |
|- ( ( W e. LMod /\ { X } C_ V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 12 |
7 9 11
|
syl2anc |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 13 |
4 10
|
lsslvec |
|- ( ( W e. LVec /\ ( N ` { X } ) e. ( LSubSp ` W ) ) -> Y e. LVec ) |
| 14 |
5 12 13
|
syl2anc |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> Y e. LVec ) |
| 15 |
1 2 3 4
|
lbslsat |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> { X } e. ( LBasis ` Y ) ) |
| 16 |
|
eqid |
|- ( LBasis ` Y ) = ( LBasis ` Y ) |
| 17 |
16
|
dimval |
|- ( ( Y e. LVec /\ { X } e. ( LBasis ` Y ) ) -> ( dim ` Y ) = ( # ` { X } ) ) |
| 18 |
14 15 17
|
syl2anc |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> ( dim ` Y ) = ( # ` { X } ) ) |
| 19 |
|
hashsng |
|- ( X e. V -> ( # ` { X } ) = 1 ) |
| 20 |
8 19
|
syl |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> ( # ` { X } ) = 1 ) |
| 21 |
18 20
|
eqtrd |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> ( dim ` Y ) = 1 ) |