Step |
Hyp |
Ref |
Expression |
1 |
|
lbslsat.v |
|- V = ( Base ` W ) |
2 |
|
lbslsat.n |
|- N = ( LSpan ` W ) |
3 |
|
lbslsat.z |
|- .0. = ( 0g ` W ) |
4 |
|
lbslsat.y |
|- Y = ( W |`s ( N ` { X } ) ) |
5 |
|
simp1 |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> W e. LVec ) |
6 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
7 |
5 6
|
syl |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> W e. LMod ) |
8 |
|
simp2 |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> X e. V ) |
9 |
8
|
snssd |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> { X } C_ V ) |
10 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
11 |
1 10 2
|
lspcl |
|- ( ( W e. LMod /\ { X } C_ V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
12 |
7 9 11
|
syl2anc |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
13 |
4 10
|
lsslvec |
|- ( ( W e. LVec /\ ( N ` { X } ) e. ( LSubSp ` W ) ) -> Y e. LVec ) |
14 |
5 12 13
|
syl2anc |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> Y e. LVec ) |
15 |
1 2 3 4
|
lbslsat |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> { X } e. ( LBasis ` Y ) ) |
16 |
|
eqid |
|- ( LBasis ` Y ) = ( LBasis ` Y ) |
17 |
16
|
dimval |
|- ( ( Y e. LVec /\ { X } e. ( LBasis ` Y ) ) -> ( dim ` Y ) = ( # ` { X } ) ) |
18 |
14 15 17
|
syl2anc |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> ( dim ` Y ) = ( # ` { X } ) ) |
19 |
|
hashsng |
|- ( X e. V -> ( # ` { X } ) = 1 ) |
20 |
8 19
|
syl |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> ( # ` { X } ) = 1 ) |
21 |
18 20
|
eqtrd |
|- ( ( W e. LVec /\ X e. V /\ X =/= .0. ) -> ( dim ` Y ) = 1 ) |