Metamath Proof Explorer


Theorem lsatdim

Description: A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypotheses lbslsat.v V = Base W
lbslsat.n N = LSpan W
lbslsat.z 0 ˙ = 0 W
lbslsat.y Y = W 𝑠 N X
Assertion lsatdim W LVec X V X 0 ˙ dim Y = 1

Proof

Step Hyp Ref Expression
1 lbslsat.v V = Base W
2 lbslsat.n N = LSpan W
3 lbslsat.z 0 ˙ = 0 W
4 lbslsat.y Y = W 𝑠 N X
5 simp1 W LVec X V X 0 ˙ W LVec
6 lveclmod W LVec W LMod
7 5 6 syl W LVec X V X 0 ˙ W LMod
8 simp2 W LVec X V X 0 ˙ X V
9 8 snssd W LVec X V X 0 ˙ X V
10 eqid LSubSp W = LSubSp W
11 1 10 2 lspcl W LMod X V N X LSubSp W
12 7 9 11 syl2anc W LVec X V X 0 ˙ N X LSubSp W
13 4 10 lsslvec W LVec N X LSubSp W Y LVec
14 5 12 13 syl2anc W LVec X V X 0 ˙ Y LVec
15 1 2 3 4 lbslsat W LVec X V X 0 ˙ X LBasis Y
16 eqid LBasis Y = LBasis Y
17 16 dimval Y LVec X LBasis Y dim Y = X
18 14 15 17 syl2anc W LVec X V X 0 ˙ dim Y = X
19 hashsng X V X = 1
20 8 19 syl W LVec X V X 0 ˙ X = 1
21 18 20 eqtrd W LVec X V X 0 ˙ dim Y = 1