Metamath Proof Explorer


Theorem tnglvec

Description: Augmenting a structure with a norm conserves left vector spaces. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypothesis tnglvec.t T = G toNrmGrp N
Assertion tnglvec N V G LVec T LVec

Proof

Step Hyp Ref Expression
1 tnglvec.t T = G toNrmGrp N
2 eqidd N V Base G = Base G
3 eqid Base G = Base G
4 1 3 tngbas N V Base G = Base T
5 eqid + G = + G
6 1 5 tngplusg N V + G = + T
7 6 oveqdr N V x Base G y Base G x + G y = x + T y
8 eqidd N V Scalar G = Scalar G
9 eqid Scalar G = Scalar G
10 1 9 tngsca N V Scalar G = Scalar T
11 eqid Base Scalar G = Base Scalar G
12 eqid G = G
13 1 12 tngvsca N V G = T
14 13 oveqdr N V x Base Scalar G y Base G x G y = x T y
15 2 4 7 8 10 11 14 lvecpropd N V G LVec T LVec