Step |
Hyp |
Ref |
Expression |
1 |
|
tnglvec.t |
|- T = ( G toNrmGrp N ) |
2 |
|
eqidd |
|- ( N e. V -> ( Base ` G ) = ( Base ` G ) ) |
3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
4 |
1 3
|
tngbas |
|- ( N e. V -> ( Base ` G ) = ( Base ` T ) ) |
5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
6 |
1 5
|
tngplusg |
|- ( N e. V -> ( +g ` G ) = ( +g ` T ) ) |
7 |
6
|
oveqdr |
|- ( ( N e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` T ) y ) ) |
8 |
|
eqidd |
|- ( N e. V -> ( Scalar ` G ) = ( Scalar ` G ) ) |
9 |
|
eqid |
|- ( Scalar ` G ) = ( Scalar ` G ) |
10 |
1 9
|
tngsca |
|- ( N e. V -> ( Scalar ` G ) = ( Scalar ` T ) ) |
11 |
|
eqid |
|- ( Base ` ( Scalar ` G ) ) = ( Base ` ( Scalar ` G ) ) |
12 |
|
eqid |
|- ( .s ` G ) = ( .s ` G ) |
13 |
1 12
|
tngvsca |
|- ( N e. V -> ( .s ` G ) = ( .s ` T ) ) |
14 |
13
|
oveqdr |
|- ( ( N e. V /\ ( x e. ( Base ` ( Scalar ` G ) ) /\ y e. ( Base ` G ) ) ) -> ( x ( .s ` G ) y ) = ( x ( .s ` T ) y ) ) |
15 |
2 4 7 8 10 11 14
|
lvecpropd |
|- ( N e. V -> ( G e. LVec <-> T e. LVec ) ) |