| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tpf1o.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ 3 )  ↦  if ( 𝑥  =  0 ,  𝐴 ,  if ( 𝑥  =  1 ,  𝐵 ,  𝐶 ) ) ) | 
						
							| 2 |  | tpf.t | ⊢ 𝑇  =  { 𝐴 ,  𝐵 ,  𝐶 } | 
						
							| 3 | 1 2 | tpf | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  𝐹 : ( 0 ..^ 3 ) ⟶ 𝑇 ) | 
						
							| 4 |  | eltpi | ⊢ ( 𝑡  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝑡  =  𝐴  ∨  𝑡  =  𝐵  ∨  𝑡  =  𝐶 ) ) | 
						
							| 5 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 6 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 3 )  ↔  3  ∈  ℕ ) | 
						
							| 7 | 5 6 | mpbir | ⊢ 0  ∈  ( 0 ..^ 3 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  0  ∈  ( 0 ..^ 3 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝑖  =  0  →  ( 𝐴  =  ( 𝐹 ‘ 𝑖 )  ↔  𝐴  =  ( 𝐹 ‘ 0 ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑖  =  0 )  →  ( 𝐴  =  ( 𝐹 ‘ 𝑖 )  ↔  𝐴  =  ( 𝐹 ‘ 0 ) ) ) | 
						
							| 12 | 1 | tpf1ofv0 | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐹 ‘ 0 )  =  𝐴 ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 14 | 8 11 13 | rspcedvd | ⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝐴  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 15 |  | eqeq1 | ⊢ ( 𝑡  =  𝐴  →  ( 𝑡  =  ( 𝐹 ‘ 𝑖 )  ↔  𝐴  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( 𝑡  =  𝐴  →  ( ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 )  ↔  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝐴  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 17 | 14 16 | syl5ibrcom | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑡  =  𝐴  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 18 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 19 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 20 |  | elfzo0 | ⊢ ( 1  ∈  ( 0 ..^ 3 )  ↔  ( 1  ∈  ℕ0  ∧  3  ∈  ℕ  ∧  1  <  3 ) ) | 
						
							| 21 | 18 5 19 20 | mpbir3an | ⊢ 1  ∈  ( 0 ..^ 3 ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝐵  ∈  𝑉  →  1  ∈  ( 0 ..^ 3 ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑖  =  1  →  ( 𝐵  =  ( 𝐹 ‘ 𝑖 )  ↔  𝐵  =  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑖  =  1 )  →  ( 𝐵  =  ( 𝐹 ‘ 𝑖 )  ↔  𝐵  =  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 26 | 1 | tpf1ofv1 | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐹 ‘ 1 )  =  𝐵 ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( 𝐵  ∈  𝑉  →  𝐵  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 28 | 22 25 27 | rspcedvd | ⊢ ( 𝐵  ∈  𝑉  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝐵  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 29 |  | eqeq1 | ⊢ ( 𝑡  =  𝐵  →  ( 𝑡  =  ( 𝐹 ‘ 𝑖 )  ↔  𝐵  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 30 | 29 | rexbidv | ⊢ ( 𝑡  =  𝐵  →  ( ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 )  ↔  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝐵  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 31 | 28 30 | syl5ibrcom | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝑡  =  𝐵  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 32 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 33 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 34 |  | elfzo0 | ⊢ ( 2  ∈  ( 0 ..^ 3 )  ↔  ( 2  ∈  ℕ0  ∧  3  ∈  ℕ  ∧  2  <  3 ) ) | 
						
							| 35 | 32 5 33 34 | mpbir3an | ⊢ 2  ∈  ( 0 ..^ 3 ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝐶  ∈  𝑉  →  2  ∈  ( 0 ..^ 3 ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑖  =  2  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 2 ) ) | 
						
							| 38 | 37 | eqeq2d | ⊢ ( 𝑖  =  2  →  ( 𝐶  =  ( 𝐹 ‘ 𝑖 )  ↔  𝐶  =  ( 𝐹 ‘ 2 ) ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑖  =  2 )  →  ( 𝐶  =  ( 𝐹 ‘ 𝑖 )  ↔  𝐶  =  ( 𝐹 ‘ 2 ) ) ) | 
						
							| 40 | 1 | tpf1ofv2 | ⊢ ( 𝐶  ∈  𝑉  →  ( 𝐹 ‘ 2 )  =  𝐶 ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( 𝐶  ∈  𝑉  →  𝐶  =  ( 𝐹 ‘ 2 ) ) | 
						
							| 42 | 36 39 41 | rspcedvd | ⊢ ( 𝐶  ∈  𝑉  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝐶  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 43 |  | eqeq1 | ⊢ ( 𝑡  =  𝐶  →  ( 𝑡  =  ( 𝐹 ‘ 𝑖 )  ↔  𝐶  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 44 | 43 | rexbidv | ⊢ ( 𝑡  =  𝐶  →  ( ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 )  ↔  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝐶  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 45 | 42 44 | syl5ibrcom | ⊢ ( 𝐶  ∈  𝑉  →  ( 𝑡  =  𝐶  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 46 | 17 31 45 | 3jaao | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( 𝑡  =  𝐴  ∨  𝑡  =  𝐵  ∨  𝑡  =  𝐶 )  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 47 | 4 46 | syl5com | ⊢ ( 𝑡  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 48 | 47 2 | eleq2s | ⊢ ( 𝑡  ∈  𝑇  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 49 | 48 | com12 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑡  ∈  𝑇  →  ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 50 | 49 | ralrimiv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ∀ 𝑡  ∈  𝑇 ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 51 |  | dffo3 | ⊢ ( 𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇  ↔  ( 𝐹 : ( 0 ..^ 3 ) ⟶ 𝑇  ∧  ∀ 𝑡  ∈  𝑇 ∃ 𝑖  ∈  ( 0 ..^ 3 ) 𝑡  =  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 52 | 3 50 51 | sylanbrc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  𝐹 : ( 0 ..^ 3 ) –onto→ 𝑇 ) |