| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ 𝑦 ) |
| 2 |
1
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ 𝑦 ) ) |
| 3 |
|
iidn3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐴 ) ) ) |
| 4 |
|
id |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ) |
| 5 |
|
rspsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
| 6 |
3 4 5
|
ee31 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) ) |
| 7 |
|
trsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 ↔ Tr 𝑞 ) ) |
| 8 |
7
|
biimpd |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 → Tr 𝑞 ) ) |
| 9 |
3 6 8
|
ee33 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → Tr 𝑞 ) ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑦 ∈ ∩ 𝐴 ) |
| 11 |
10
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑦 ∈ ∩ 𝐴 ) ) |
| 12 |
|
elintg |
⊢ ( 𝑦 ∈ ∩ 𝐴 → ( 𝑦 ∈ ∩ 𝐴 ↔ ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) ) |
| 13 |
12
|
ibi |
⊢ ( 𝑦 ∈ ∩ 𝐴 → ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) |
| 14 |
11 13
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) ) |
| 15 |
|
rsp |
⊢ ( ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 → ( 𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞 ) ) |
| 16 |
14 15
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞 ) ) ) |
| 17 |
|
trel |
⊢ ( Tr 𝑞 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞 ) → 𝑧 ∈ 𝑞 ) ) |
| 18 |
17
|
expd |
⊢ ( Tr 𝑞 → ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑞 → 𝑧 ∈ 𝑞 ) ) ) |
| 19 |
9 2 16 18
|
ee323 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞 ) ) ) |
| 20 |
19
|
ralrimdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) ) |
| 21 |
|
elintg |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) ) |
| 22 |
21
|
biimprd |
⊢ ( 𝑧 ∈ 𝑦 → ( ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 → 𝑧 ∈ ∩ 𝐴 ) ) |
| 23 |
2 20 22
|
syl6c |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
| 24 |
23
|
alrimivv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
| 25 |
|
dftr2 |
⊢ ( Tr ∩ 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴 ) |