| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ▶ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ 𝑦 ) |
| 3 |
1 2
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ▶ 𝑧 ∈ 𝑦 ) |
| 4 |
|
idn3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) , 𝑞 ∈ 𝐴 ▶ 𝑞 ∈ 𝐴 ) |
| 5 |
|
idn1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ) |
| 6 |
|
rspsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
| 7 |
4 5 6
|
e31 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) , 𝑞 ∈ 𝐴 ▶ [ 𝑞 / 𝑥 ] Tr 𝑥 ) |
| 8 |
|
trsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 ↔ Tr 𝑞 ) ) |
| 9 |
8
|
biimpd |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 → Tr 𝑞 ) ) |
| 10 |
4 7 9
|
e33 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) , 𝑞 ∈ 𝐴 ▶ Tr 𝑞 ) |
| 11 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑦 ∈ ∩ 𝐴 ) |
| 12 |
1 11
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ▶ 𝑦 ∈ ∩ 𝐴 ) |
| 13 |
|
elintg |
⊢ ( 𝑦 ∈ ∩ 𝐴 → ( 𝑦 ∈ ∩ 𝐴 ↔ ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) ) |
| 14 |
13
|
ibi |
⊢ ( 𝑦 ∈ ∩ 𝐴 → ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) |
| 15 |
12 14
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ▶ ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 ) |
| 16 |
|
rsp |
⊢ ( ∀ 𝑞 ∈ 𝐴 𝑦 ∈ 𝑞 → ( 𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞 ) ) |
| 17 |
15 16
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ▶ ( 𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞 ) ) |
| 18 |
|
pm2.27 |
⊢ ( 𝑞 ∈ 𝐴 → ( ( 𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞 ) → 𝑦 ∈ 𝑞 ) ) |
| 19 |
4 17 18
|
e32 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) , 𝑞 ∈ 𝐴 ▶ 𝑦 ∈ 𝑞 ) |
| 20 |
|
trel |
⊢ ( Tr 𝑞 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞 ) → 𝑧 ∈ 𝑞 ) ) |
| 21 |
20
|
expd |
⊢ ( Tr 𝑞 → ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑞 → 𝑧 ∈ 𝑞 ) ) ) |
| 22 |
10 3 19 21
|
e323 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) , 𝑞 ∈ 𝐴 ▶ 𝑧 ∈ 𝑞 ) |
| 23 |
22
|
in3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ▶ ( 𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞 ) ) |
| 24 |
23
|
gen21 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ▶ ∀ 𝑞 ( 𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞 ) ) |
| 25 |
|
df-ral |
⊢ ( ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ↔ ∀ 𝑞 ( 𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞 ) ) |
| 26 |
25
|
biimpri |
⊢ ( ∀ 𝑞 ( 𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞 ) → ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) |
| 27 |
24 26
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ▶ ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) |
| 28 |
|
elintg |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ ∩ 𝐴 ↔ ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 ) ) |
| 29 |
28
|
biimprd |
⊢ ( 𝑧 ∈ 𝑦 → ( ∀ 𝑞 ∈ 𝐴 𝑧 ∈ 𝑞 → 𝑧 ∈ ∩ 𝐴 ) ) |
| 30 |
3 27 29
|
e22 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) ▶ 𝑧 ∈ ∩ 𝐴 ) |
| 31 |
30
|
in2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
| 32 |
31
|
gen12 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
| 33 |
|
dftr2 |
⊢ ( Tr ∩ 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) ) |
| 34 |
33
|
biimpri |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴 ) → 𝑧 ∈ ∩ 𝐴 ) → Tr ∩ 𝐴 ) |
| 35 |
32 34
|
e1a |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ Tr ∩ 𝐴 ) |
| 36 |
35
|
in1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴 ) |