| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlne.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
trlne.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
trlne.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
trlne.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
trlne.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐾 ∈ HL ) |
| 7 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐾 ∈ AtLat ) |
| 9 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑃 ∈ 𝐴 ) |
| 10 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 11 |
1 10 2
|
atnle0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ¬ 𝑃 ≤ ( 0. ‘ 𝐾 ) ) |
| 12 |
8 9 11
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ¬ 𝑃 ≤ ( 0. ‘ 𝐾 ) ) |
| 13 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 14 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 15 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐹 ∈ 𝑇 ) |
| 16 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑃 ) = 𝑃 ) |
| 17 |
1 10 2 3 4 5
|
trl0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
| 18 |
13 14 15 16 17
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
| 19 |
18
|
breq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ≤ ( 𝑅 ‘ 𝐹 ) ↔ 𝑃 ≤ ( 0. ‘ 𝐾 ) ) ) |
| 20 |
12 19
|
mtbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ¬ 𝑃 ≤ ( 𝑅 ‘ 𝐹 ) ) |
| 21 |
1 2 3 4 5
|
trlne |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝑃 ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 23 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝐾 ∈ HL ) |
| 24 |
23 7
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝐾 ∈ AtLat ) |
| 25 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝑃 ∈ 𝐴 ) |
| 26 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 27 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 28 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝐹 ∈ 𝑇 ) |
| 29 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) |
| 30 |
1 2 3 4 5
|
trlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
| 31 |
26 27 28 29 30
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
| 32 |
1 2
|
atncmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) → ( ¬ 𝑃 ≤ ( 𝑅 ‘ 𝐹 ) ↔ 𝑃 ≠ ( 𝑅 ‘ 𝐹 ) ) ) |
| 33 |
24 25 31 32
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ¬ 𝑃 ≤ ( 𝑅 ‘ 𝐹 ) ↔ 𝑃 ≠ ( 𝑅 ‘ 𝐹 ) ) ) |
| 34 |
22 33
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ¬ 𝑃 ≤ ( 𝑅 ‘ 𝐹 ) ) |
| 35 |
20 34
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ¬ 𝑃 ≤ ( 𝑅 ‘ 𝐹 ) ) |