Metamath Proof Explorer


Theorem tsna1

Description: A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsna1 ( 𝜃 → ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 tsan1 ( 𝜃 → ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ( 𝜑𝜓 ) ) )
2 notnotb ( ( 𝜑𝜓 ) ↔ ¬ ¬ ( 𝜑𝜓 ) )
3 df-nan ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
4 2 3 bitr3i ( ¬ ¬ ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
5 4 con4bii ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) )
6 5 orbi2i ( ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ( 𝜑𝜓 ) ) )
7 1 6 sylibr ( 𝜃 → ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) )