Description: A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsna1 | ⊢ ( 𝜃 → ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ ( 𝜑 ⊼ 𝜓 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tsan1 | ⊢ ( 𝜃 → ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 2 | notnotb | ⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ¬ ( 𝜑 ⊼ 𝜓 ) ) | |
| 3 | df-nan | ⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) | |
| 4 | 2 3 | bitr3i | ⊢ ( ¬ ¬ ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) | 
| 5 | 4 | con4bii | ⊢ ( ¬ ( 𝜑 ⊼ 𝜓 ) ↔ ( 𝜑 ∧ 𝜓 ) ) | 
| 6 | 5 | orbi2i | ⊢ ( ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ ( 𝜑 ⊼ 𝜓 ) ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ( 𝜑 ∧ 𝜓 ) ) ) | 
| 7 | 1 6 | sylibr | ⊢ ( 𝜃 → ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ ( 𝜑 ⊼ 𝜓 ) ) ) |