| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl31 |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 2 |
|
uhgrwkspthlem1 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun ◡ 𝐹 ) |
| 3 |
2
|
expcom |
⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → Fun ◡ 𝐹 ) ) |
| 4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → Fun ◡ 𝐹 ) ) |
| 5 |
4
|
com12 |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → Fun ◡ 𝐹 ) ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → Fun ◡ 𝐹 ) ) |
| 7 |
6
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → Fun ◡ 𝐹 ) ) |
| 8 |
7
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → Fun ◡ 𝐹 ) |
| 9 |
|
istrl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) |
| 10 |
1 8 9
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 11 |
|
3simpc |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) |
| 13 |
|
3simpc |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) |
| 14 |
13
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) |
| 16 |
|
uhgrwkspthlem2 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → Fun ◡ 𝑃 ) |
| 17 |
1 12 15 16
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → Fun ◡ 𝑃 ) |
| 18 |
|
isspth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
| 19 |
10 17 18
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |
| 20 |
|
3anass |
⊢ ( ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
| 21 |
19 15 20
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) |
| 22 |
|
3simpa |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 24 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 25 |
24
|
isspthonpth |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
| 26 |
23 25
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
| 27 |
21 26
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
| 28 |
27
|
ex |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) |
| 29 |
24
|
wlkonprop |
⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
| 30 |
|
3simpc |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 31 |
30
|
3anim1i |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
| 32 |
29 31
|
syl |
⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
| 33 |
28 32
|
syl11 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) |
| 34 |
|
spthonpthon |
⊢ ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
| 35 |
|
pthontrlon |
⊢ ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
| 36 |
|
trlsonwlkon |
⊢ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
| 37 |
34 35 36
|
3syl |
⊢ ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
| 38 |
33 37
|
impbid1 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) |