Step |
Hyp |
Ref |
Expression |
1 |
|
simpl31 |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
2 |
|
uhgrwkspthlem1 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun ◡ 𝐹 ) |
3 |
2
|
expcom |
⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → Fun ◡ 𝐹 ) ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → Fun ◡ 𝐹 ) ) |
5 |
4
|
com12 |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → Fun ◡ 𝐹 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → Fun ◡ 𝐹 ) ) |
7 |
6
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → Fun ◡ 𝐹 ) ) |
8 |
7
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → Fun ◡ 𝐹 ) |
9 |
|
istrl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) |
10 |
1 8 9
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
11 |
|
3simpc |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) |
13 |
|
3simpc |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) |
16 |
|
uhgrwkspthlem2 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → Fun ◡ 𝑃 ) |
17 |
1 12 15 16
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → Fun ◡ 𝑃 ) |
18 |
|
isspth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
19 |
10 17 18
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |
20 |
|
3anass |
⊢ ( ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
21 |
19 15 20
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) |
22 |
|
3simpa |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
24 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
25 |
24
|
isspthonpth |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
26 |
23 25
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
27 |
21 26
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ) → 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
28 |
27
|
ex |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) |
29 |
24
|
wlkonprop |
⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
30 |
|
3simpc |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) |
31 |
30
|
3anim1i |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
32 |
29 31
|
syl |
⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
33 |
28 32
|
syl11 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) |
34 |
|
spthonpthon |
⊢ ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
35 |
|
pthontrlon |
⊢ ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
36 |
|
trlsonwlkon |
⊢ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
37 |
34 35 36
|
3syl |
⊢ ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
38 |
33 37
|
impbid1 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) |