| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unblem.2 | ⊢ 𝐹  =  ( rec ( ( 𝑥  ∈  V  ↦  ∩  ( 𝐴  ∖  suc  𝑥 ) ) ,  ∩  𝐴 )  ↾  ω ) | 
						
							| 2 | 1 | unblem2 | ⊢ ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ( 𝑧  ∈  ω  →  ( 𝐹 ‘ 𝑧 )  ∈  𝐴 ) ) | 
						
							| 3 | 2 | imp | ⊢ ( ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  ∧  𝑧  ∈  ω )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝐴 ) | 
						
							| 4 |  | omsson | ⊢ ω  ⊆  On | 
						
							| 5 |  | sstr | ⊢ ( ( 𝐴  ⊆  ω  ∧  ω  ⊆  On )  →  𝐴  ⊆  On ) | 
						
							| 6 | 4 5 | mpan2 | ⊢ ( 𝐴  ⊆  ω  →  𝐴  ⊆  On ) | 
						
							| 7 |  | ssel | ⊢ ( 𝐴  ⊆  On  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝐴  →  ( 𝐹 ‘ 𝑧 )  ∈  On ) ) | 
						
							| 8 | 7 | anc2li | ⊢ ( 𝐴  ⊆  On  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝐴  →  ( 𝐴  ⊆  On  ∧  ( 𝐹 ‘ 𝑧 )  ∈  On ) ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝐴  ⊆  ω  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝐴  →  ( 𝐴  ⊆  On  ∧  ( 𝐹 ‘ 𝑧 )  ∈  On ) ) ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  ∧  𝑧  ∈  ω )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝐴  →  ( 𝐴  ⊆  On  ∧  ( 𝐹 ‘ 𝑧 )  ∈  On ) ) ) | 
						
							| 11 | 3 10 | mpd | ⊢ ( ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  ∧  𝑧  ∈  ω )  →  ( 𝐴  ⊆  On  ∧  ( 𝐹 ‘ 𝑧 )  ∈  On ) ) | 
						
							| 12 |  | onmindif | ⊢ ( ( 𝐴  ⊆  On  ∧  ( 𝐹 ‘ 𝑧 )  ∈  On )  →  ( 𝐹 ‘ 𝑧 )  ∈  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  ∧  𝑧  ∈  ω )  →  ( 𝐹 ‘ 𝑧 )  ∈  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 14 |  | unblem1 | ⊢ ( ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  ∧  ( 𝐹 ‘ 𝑧 )  ∈  𝐴 )  →  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) )  ∈  𝐴 ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝐴  →  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) )  ∈  𝐴 ) ) | 
						
							| 16 | 2 15 | syld | ⊢ ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ( 𝑧  ∈  ω  →  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) )  ∈  𝐴 ) ) | 
						
							| 17 |  | suceq | ⊢ ( 𝑦  =  𝑥  →  suc  𝑦  =  suc  𝑥 ) | 
						
							| 18 | 17 | difeq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝐴  ∖  suc  𝑦 )  =  ( 𝐴  ∖  suc  𝑥 ) ) | 
						
							| 19 | 18 | inteqd | ⊢ ( 𝑦  =  𝑥  →  ∩  ( 𝐴  ∖  suc  𝑦 )  =  ∩  ( 𝐴  ∖  suc  𝑥 ) ) | 
						
							| 20 |  | suceq | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑧 )  →  suc  𝑦  =  suc  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 21 | 20 | difeq2d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑧 )  →  ( 𝐴  ∖  suc  𝑦 )  =  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 22 | 21 | inteqd | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑧 )  →  ∩  ( 𝐴  ∖  suc  𝑦 )  =  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 23 | 1 19 22 | frsucmpt2 | ⊢ ( ( 𝑧  ∈  ω  ∧  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) )  ∈  𝐴 )  →  ( 𝐹 ‘ suc  𝑧 )  =  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝑧  ∈  ω  →  ( ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) )  ∈  𝐴  →  ( 𝐹 ‘ suc  𝑧 )  =  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 25 | 16 24 | sylcom | ⊢ ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ( 𝑧  ∈  ω  →  ( 𝐹 ‘ suc  𝑧 )  =  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  ∧  𝑧  ∈  ω )  →  ( 𝐹 ‘ suc  𝑧 )  =  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 27 | 13 26 | eleqtrrd | ⊢ ( ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  ∧  𝑧  ∈  ω )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹 ‘ suc  𝑧 ) ) | 
						
							| 28 | 27 | ex | ⊢ ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ( 𝑧  ∈  ω  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹 ‘ suc  𝑧 ) ) ) |