| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdomg |
⊢ ( ω ∈ V → ( 𝐴 ⊆ ω → 𝐴 ≼ ω ) ) |
| 2 |
1
|
imp |
⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ) → 𝐴 ≼ ω ) |
| 3 |
2
|
3adant3 |
⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → 𝐴 ≼ ω ) |
| 4 |
|
simp1 |
⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → ω ∈ V ) |
| 5 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ω ∧ ω ∈ V ) → 𝐴 ∈ V ) |
| 6 |
5
|
ancoms |
⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ) → 𝐴 ∈ V ) |
| 7 |
6
|
3adant3 |
⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → 𝐴 ∈ V ) |
| 8 |
|
eqid |
⊢ ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) = ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) |
| 9 |
8
|
unblem4 |
⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) : ω –1-1→ 𝐴 ) |
| 10 |
9
|
3adant1 |
⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) : ω –1-1→ 𝐴 ) |
| 11 |
|
f1dom2g |
⊢ ( ( ω ∈ V ∧ 𝐴 ∈ V ∧ ( rec ( ( 𝑧 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑧 ) ) , ∩ 𝐴 ) ↾ ω ) : ω –1-1→ 𝐴 ) → ω ≼ 𝐴 ) |
| 12 |
4 7 10 11
|
syl3anc |
⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → ω ≼ 𝐴 ) |
| 13 |
|
sbth |
⊢ ( ( 𝐴 ≼ ω ∧ ω ≼ 𝐴 ) → 𝐴 ≈ ω ) |
| 14 |
3 12 13
|
syl2anc |
⊢ ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) → 𝐴 ≈ ω ) |