Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg2v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgredg2v.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
usgredg2v.a |
⊢ 𝐴 = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑌 ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝑥 = 𝑌 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
6 |
5 3
|
elrab2 |
⊢ ( 𝑌 ∈ 𝐴 ↔ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
7 |
6
|
biimpi |
⊢ ( 𝑌 ∈ 𝐴 → ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
8 |
1 2
|
usgredgreu |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ) |
9 |
8
|
3expb |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ) |
10 |
1 2 3
|
usgredg2vlem1 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
12 |
11
|
ad4ant23 |
⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
13 |
|
eleq1 |
⊢ ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐼 ∈ 𝑉 ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → ( 𝐼 ∈ 𝑉 ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → 𝐼 ∈ 𝑉 ) |
16 |
|
prcom |
⊢ { 𝑁 , 𝑧 } = { 𝑧 , 𝑁 } |
17 |
16
|
eqeq2i |
⊢ ( ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ↔ ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
18 |
17
|
reubii |
⊢ ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
19 |
18
|
biimpi |
⊢ ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
20 |
19
|
ad3antrrr |
⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
21 |
|
preq1 |
⊢ ( 𝑧 = 𝐼 → { 𝑧 , 𝑁 } = { 𝐼 , 𝑁 } ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑧 = 𝐼 → ( ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ↔ ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) |
23 |
22
|
riota2 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) = 𝐼 ) ) |
24 |
15 20 23
|
syl2anc |
⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → ( ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) = 𝐼 ) ) |
25 |
24
|
exbiri |
⊢ ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) = 𝐼 → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
26 |
25
|
com13 |
⊢ ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) = 𝐼 → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
27 |
26
|
eqcoms |
⊢ ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
28 |
27
|
pm2.43i |
⊢ ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) |
29 |
28
|
expdcom |
⊢ ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) → ( 𝑌 ∈ 𝐴 → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
30 |
9 29
|
mpancom |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) → ( 𝑌 ∈ 𝐴 → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
31 |
30
|
expcom |
⊢ ( ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ( 𝐺 ∈ USGraph → ( 𝑌 ∈ 𝐴 → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) ) |
32 |
31
|
com23 |
⊢ ( ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ( 𝑌 ∈ 𝐴 → ( 𝐺 ∈ USGraph → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) ) |
33 |
7 32
|
mpcom |
⊢ ( 𝑌 ∈ 𝐴 → ( 𝐺 ∈ USGraph → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
34 |
33
|
impcom |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴 ) → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) |