Metamath Proof Explorer


Theorem ustssel

Description: A uniform structure is upward closed. Condition F_I of BourbakiTop1 p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017) (Proof shortened by AV, 17-Sep-2021)

Ref Expression
Assertion ustssel ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉𝑊𝑊𝑈 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) )
2 1 elfvexd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑋 ∈ V )
3 isust ( 𝑋 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) ) ) )
4 2 3 syl ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) ) ) )
5 1 4 mpbid ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) ) )
6 5 simp3d ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) )
7 simp1 ( ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) → ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) )
8 7 ralimi ( ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) → ∀ 𝑣𝑈𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) )
9 6 8 syl ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ∀ 𝑣𝑈𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) )
10 simp2 ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑉𝑈 )
11 2 2 xpexd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑋 × 𝑋 ) ∈ V )
12 simp3 ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑊 ⊆ ( 𝑋 × 𝑋 ) )
13 11 12 sselpwd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑊 ∈ 𝒫 ( 𝑋 × 𝑋 ) )
14 sseq1 ( 𝑣 = 𝑉 → ( 𝑣𝑤𝑉𝑤 ) )
15 14 imbi1d ( 𝑣 = 𝑉 → ( ( 𝑣𝑤𝑤𝑈 ) ↔ ( 𝑉𝑤𝑤𝑈 ) ) )
16 sseq2 ( 𝑤 = 𝑊 → ( 𝑉𝑤𝑉𝑊 ) )
17 eleq1 ( 𝑤 = 𝑊 → ( 𝑤𝑈𝑊𝑈 ) )
18 16 17 imbi12d ( 𝑤 = 𝑊 → ( ( 𝑉𝑤𝑤𝑈 ) ↔ ( 𝑉𝑊𝑊𝑈 ) ) )
19 15 18 rspc2v ( ( 𝑉𝑈𝑊 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) → ( ∀ 𝑣𝑈𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) → ( 𝑉𝑊𝑊𝑈 ) ) )
20 10 13 19 syl2anc ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∀ 𝑣𝑈𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) → ( 𝑉𝑊𝑊𝑈 ) ) )
21 9 20 mpd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉𝑈𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉𝑊𝑊𝑈 ) )