Metamath Proof Explorer


Theorem ustuqtop3

Description: Lemma for ustuqtop , similar to elnei . (Contributed by Thierry Arnoux, 11-Jan-2018)

Ref Expression
Hypothesis utopustuq.1 𝑁 = ( 𝑝𝑋 ↦ ran ( 𝑣𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) )
Assertion ustuqtop3 ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) → 𝑝𝑎 )

Proof

Step Hyp Ref Expression
1 utopustuq.1 𝑁 = ( 𝑝𝑋 ↦ ran ( 𝑣𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) )
2 fnresi ( I ↾ 𝑋 ) Fn 𝑋
3 fnsnfv ( ( ( I ↾ 𝑋 ) Fn 𝑋𝑝𝑋 ) → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } = ( ( I ↾ 𝑋 ) “ { 𝑝 } ) )
4 2 3 mpan ( 𝑝𝑋 → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } = ( ( I ↾ 𝑋 ) “ { 𝑝 } ) )
5 4 ad4antlr ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) ∧ 𝑤𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } = ( ( I ↾ 𝑋 ) “ { 𝑝 } ) )
6 ustdiag ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑤 )
7 6 ad5ant14 ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) ∧ 𝑤𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( I ↾ 𝑋 ) ⊆ 𝑤 )
8 imass1 ( ( I ↾ 𝑋 ) ⊆ 𝑤 → ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ⊆ ( 𝑤 “ { 𝑝 } ) )
9 7 8 syl ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) ∧ 𝑤𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ⊆ ( 𝑤 “ { 𝑝 } ) )
10 5 9 eqsstrd ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) ∧ 𝑤𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } ⊆ ( 𝑤 “ { 𝑝 } ) )
11 fvex ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ∈ V
12 11 snss ( ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ∈ ( 𝑤 “ { 𝑝 } ) ↔ { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } ⊆ ( 𝑤 “ { 𝑝 } ) )
13 10 12 sylibr ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) ∧ 𝑤𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ∈ ( 𝑤 “ { 𝑝 } ) )
14 fvresi ( 𝑝𝑋 → ( ( I ↾ 𝑋 ) ‘ 𝑝 ) = 𝑝 )
15 14 eqcomd ( 𝑝𝑋𝑝 = ( ( I ↾ 𝑋 ) ‘ 𝑝 ) )
16 15 ad4antlr ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) ∧ 𝑤𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑝 = ( ( I ↾ 𝑋 ) ‘ 𝑝 ) )
17 simpr ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) ∧ 𝑤𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑎 = ( 𝑤 “ { 𝑝 } ) )
18 13 16 17 3eltr4d ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) ∧ 𝑤𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑝𝑎 )
19 1 ustuqtoplem ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ V ) → ( 𝑎 ∈ ( 𝑁𝑝 ) ↔ ∃ 𝑤𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) )
20 19 elvd ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) → ( 𝑎 ∈ ( 𝑁𝑝 ) ↔ ∃ 𝑤𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) )
21 20 biimpa ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) → ∃ 𝑤𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) )
22 18 21 r19.29a ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝𝑋 ) ∧ 𝑎 ∈ ( 𝑁𝑝 ) ) → 𝑝𝑎 )