Metamath Proof Explorer


Theorem ustuqtop3

Description: Lemma for ustuqtop , similar to elnei . (Contributed by Thierry Arnoux, 11-Jan-2018)

Ref Expression
Hypothesis utopustuq.1 N=pXranvUvp
Assertion ustuqtop3 UUnifOnXpXaNppa

Proof

Step Hyp Ref Expression
1 utopustuq.1 N=pXranvUvp
2 fnresi IXFnX
3 fnsnfv IXFnXpXIXp=IXp
4 2 3 mpan pXIXp=IXp
5 4 ad4antlr UUnifOnXpXaNpwUa=wpIXp=IXp
6 ustdiag UUnifOnXwUIXw
7 6 ad5ant14 UUnifOnXpXaNpwUa=wpIXw
8 imass1 IXwIXpwp
9 7 8 syl UUnifOnXpXaNpwUa=wpIXpwp
10 5 9 eqsstrd UUnifOnXpXaNpwUa=wpIXpwp
11 fvex IXpV
12 11 snss IXpwpIXpwp
13 10 12 sylibr UUnifOnXpXaNpwUa=wpIXpwp
14 fvresi pXIXp=p
15 14 eqcomd pXp=IXp
16 15 ad4antlr UUnifOnXpXaNpwUa=wpp=IXp
17 simpr UUnifOnXpXaNpwUa=wpa=wp
18 13 16 17 3eltr4d UUnifOnXpXaNpwUa=wppa
19 1 ustuqtoplem UUnifOnXpXaVaNpwUa=wp
20 19 elvd UUnifOnXpXaNpwUa=wp
21 20 biimpa UUnifOnXpXaNpwUa=wp
22 18 21 r19.29a UUnifOnXpXaNppa