| Step |
Hyp |
Ref |
Expression |
| 1 |
|
utopustuq.1 |
⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
| 2 |
|
ustbasel |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 ) |
| 3 |
|
snssi |
⊢ ( 𝑝 ∈ 𝑋 → { 𝑝 } ⊆ 𝑋 ) |
| 4 |
|
dfss |
⊢ ( { 𝑝 } ⊆ 𝑋 ↔ { 𝑝 } = ( { 𝑝 } ∩ 𝑋 ) ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝑝 ∈ 𝑋 → { 𝑝 } = ( { 𝑝 } ∩ 𝑋 ) ) |
| 6 |
|
incom |
⊢ ( { 𝑝 } ∩ 𝑋 ) = ( 𝑋 ∩ { 𝑝 } ) |
| 7 |
5 6
|
eqtr2di |
⊢ ( 𝑝 ∈ 𝑋 → ( 𝑋 ∩ { 𝑝 } ) = { 𝑝 } ) |
| 8 |
|
snnzg |
⊢ ( 𝑝 ∈ 𝑋 → { 𝑝 } ≠ ∅ ) |
| 9 |
7 8
|
eqnetrd |
⊢ ( 𝑝 ∈ 𝑋 → ( 𝑋 ∩ { 𝑝 } ) ≠ ∅ ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑋 ∩ { 𝑝 } ) ≠ ∅ ) |
| 11 |
|
xpima2 |
⊢ ( ( 𝑋 ∩ { 𝑝 } ) ≠ ∅ → ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) = 𝑋 ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) = 𝑋 ) |
| 13 |
12
|
eqcomd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 = ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) ) |
| 14 |
|
imaeq1 |
⊢ ( 𝑤 = ( 𝑋 × 𝑋 ) → ( 𝑤 “ { 𝑝 } ) = ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) ) |
| 15 |
14
|
rspceeqv |
⊢ ( ( ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ 𝑋 = ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) ) → ∃ 𝑤 ∈ 𝑈 𝑋 = ( 𝑤 “ { 𝑝 } ) ) |
| 16 |
2 13 15
|
syl2an2r |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ∃ 𝑤 ∈ 𝑈 𝑋 = ( 𝑤 “ { 𝑝 } ) ) |
| 17 |
|
elfvex |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) |
| 18 |
1
|
ustuqtoplem |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑋 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 19 |
17 18
|
mpidan |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑋 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 20 |
16 19
|
mpbird |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |