Metamath Proof Explorer


Theorem uvtx0

Description: There is no universal vertex if there is no vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 30-Oct-2020) (Proof shortened by AV, 14-Feb-2022)

Ref Expression
Hypothesis uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion uvtx0 ( 𝑉 = ∅ → ( UnivVtx ‘ 𝐺 ) = ∅ )

Proof

Step Hyp Ref Expression
1 uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 uvtxval ( UnivVtx ‘ 𝐺 ) = { 𝑣𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) }
3 rabeq ( 𝑉 = ∅ → { 𝑣𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } = { 𝑣 ∈ ∅ ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } )
4 rab0 { 𝑣 ∈ ∅ ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } = ∅
5 3 4 eqtrdi ( 𝑉 = ∅ → { 𝑣𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } = ∅ )
6 2 5 syl5eq ( 𝑉 = ∅ → ( UnivVtx ‘ 𝐺 ) = ∅ )