Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxel.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isuvtx.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
sneq |
⊢ ( 𝑛 = 𝑁 → { 𝑛 } = { 𝑁 } ) |
4 |
3
|
difeq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑉 ∖ { 𝑛 } ) = ( 𝑉 ∖ { 𝑁 } ) ) |
5 |
|
preq2 |
⊢ ( 𝑛 = 𝑁 → { 𝑘 , 𝑛 } = { 𝑘 , 𝑁 } ) |
6 |
5
|
sseq1d |
⊢ ( 𝑛 = 𝑁 → ( { 𝑘 , 𝑛 } ⊆ 𝑒 ↔ { 𝑘 , 𝑁 } ⊆ 𝑒 ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑛 = 𝑁 → ( ∃ 𝑒 ∈ 𝐸 { 𝑘 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ 𝐸 { 𝑘 , 𝑁 } ⊆ 𝑒 ) ) |
8 |
4 7
|
raleqbidv |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑛 } ) ∃ 𝑒 ∈ 𝐸 { 𝑘 , 𝑛 } ⊆ 𝑒 ↔ ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑁 } ) ∃ 𝑒 ∈ 𝐸 { 𝑘 , 𝑁 } ⊆ 𝑒 ) ) |
9 |
1 2
|
isuvtx |
⊢ ( UnivVtx ‘ 𝐺 ) = { 𝑛 ∈ 𝑉 ∣ ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑛 } ) ∃ 𝑒 ∈ 𝐸 { 𝑘 , 𝑛 } ⊆ 𝑒 } |
10 |
8 9
|
elrab2 |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑁 ∈ 𝑉 ∧ ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑁 } ) ∃ 𝑒 ∈ 𝐸 { 𝑘 , 𝑁 } ⊆ 𝑒 ) ) |