Metamath Proof Explorer


Theorem uvtxel1

Description: Characterization of a universal vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 14-Feb-2022)

Ref Expression
Hypotheses uvtxel.v V = Vtx G
isuvtx.e E = Edg G
Assertion uvtxel1 N UnivVtx G N V k V N e E k N e

Proof

Step Hyp Ref Expression
1 uvtxel.v V = Vtx G
2 isuvtx.e E = Edg G
3 sneq n = N n = N
4 3 difeq2d n = N V n = V N
5 preq2 n = N k n = k N
6 5 sseq1d n = N k n e k N e
7 6 rexbidv n = N e E k n e e E k N e
8 4 7 raleqbidv n = N k V n e E k n e k V N e E k N e
9 1 2 isuvtx UnivVtx G = n V | k V n e E k n e
10 8 9 elrab2 N UnivVtx G N V k V N e E k N e