Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxel.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isuvtx.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1
|
uvtxval |
⊢ ( UnivVtx ‘ 𝐺 ) = { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } |
4 |
3
|
a1i |
⊢ ( 𝐸 = ∅ → ( UnivVtx ‘ 𝐺 ) = { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } ) |
5 |
4
|
neeq1d |
⊢ ( 𝐸 = ∅ → ( ( UnivVtx ‘ 𝐺 ) ≠ ∅ ↔ { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } ≠ ∅ ) ) |
6 |
|
rabn0 |
⊢ ( { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } ≠ ∅ ↔ ∃ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) |
7 |
6
|
a1i |
⊢ ( 𝐸 = ∅ → ( { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } ≠ ∅ ↔ ∃ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
8 |
|
falseral0 |
⊢ ( ( ∀ 𝑛 ¬ 𝑛 ∈ ∅ ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) → ( 𝑉 ∖ { 𝑣 } ) = ∅ ) |
9 |
8
|
ex |
⊢ ( ∀ 𝑛 ¬ 𝑛 ∈ ∅ → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ → ( 𝑉 ∖ { 𝑣 } ) = ∅ ) ) |
10 |
|
noel |
⊢ ¬ 𝑛 ∈ ∅ |
11 |
9 10
|
mpg |
⊢ ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ → ( 𝑉 ∖ { 𝑣 } ) = ∅ ) |
12 |
|
ssdif0 |
⊢ ( 𝑉 ⊆ { 𝑣 } ↔ ( 𝑉 ∖ { 𝑣 } ) = ∅ ) |
13 |
|
sssn |
⊢ ( 𝑉 ⊆ { 𝑣 } ↔ ( 𝑉 = ∅ ∨ 𝑉 = { 𝑣 } ) ) |
14 |
|
ne0i |
⊢ ( 𝑣 ∈ 𝑉 → 𝑉 ≠ ∅ ) |
15 |
|
eqneqall |
⊢ ( 𝑉 = ∅ → ( 𝑉 ≠ ∅ → 𝑉 = { 𝑣 } ) ) |
16 |
14 15
|
syl5 |
⊢ ( 𝑉 = ∅ → ( 𝑣 ∈ 𝑉 → 𝑉 = { 𝑣 } ) ) |
17 |
|
ax-1 |
⊢ ( 𝑉 = { 𝑣 } → ( 𝑣 ∈ 𝑉 → 𝑉 = { 𝑣 } ) ) |
18 |
16 17
|
jaoi |
⊢ ( ( 𝑉 = ∅ ∨ 𝑉 = { 𝑣 } ) → ( 𝑣 ∈ 𝑉 → 𝑉 = { 𝑣 } ) ) |
19 |
13 18
|
sylbi |
⊢ ( 𝑉 ⊆ { 𝑣 } → ( 𝑣 ∈ 𝑉 → 𝑉 = { 𝑣 } ) ) |
20 |
12 19
|
sylbir |
⊢ ( ( 𝑉 ∖ { 𝑣 } ) = ∅ → ( 𝑣 ∈ 𝑉 → 𝑉 = { 𝑣 } ) ) |
21 |
11 20
|
syl |
⊢ ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ → ( 𝑣 ∈ 𝑉 → 𝑉 = { 𝑣 } ) ) |
22 |
21
|
impcom |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) → 𝑉 = { 𝑣 } ) |
23 |
|
vsnid |
⊢ 𝑣 ∈ { 𝑣 } |
24 |
|
eleq2 |
⊢ ( 𝑉 = { 𝑣 } → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝑣 } ) ) |
25 |
23 24
|
mpbiri |
⊢ ( 𝑉 = { 𝑣 } → 𝑣 ∈ 𝑉 ) |
26 |
|
ralel |
⊢ ∀ 𝑛 ∈ ∅ 𝑛 ∈ ∅ |
27 |
|
difeq1 |
⊢ ( 𝑉 = { 𝑣 } → ( 𝑉 ∖ { 𝑣 } ) = ( { 𝑣 } ∖ { 𝑣 } ) ) |
28 |
|
difid |
⊢ ( { 𝑣 } ∖ { 𝑣 } ) = ∅ |
29 |
27 28
|
eqtrdi |
⊢ ( 𝑉 = { 𝑣 } → ( 𝑉 ∖ { 𝑣 } ) = ∅ ) |
30 |
29
|
raleqdv |
⊢ ( 𝑉 = { 𝑣 } → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ↔ ∀ 𝑛 ∈ ∅ 𝑛 ∈ ∅ ) ) |
31 |
26 30
|
mpbiri |
⊢ ( 𝑉 = { 𝑣 } → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) |
32 |
25 31
|
jca |
⊢ ( 𝑉 = { 𝑣 } → ( 𝑣 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) ) |
33 |
22 32
|
impbii |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) ↔ 𝑉 = { 𝑣 } ) |
34 |
33
|
a1i |
⊢ ( 𝐸 = ∅ → ( ( 𝑣 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) ↔ 𝑉 = { 𝑣 } ) ) |
35 |
34
|
exbidv |
⊢ ( 𝐸 = ∅ → ( ∃ 𝑣 ( 𝑣 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) ) |
36 |
2
|
eqeq1i |
⊢ ( 𝐸 = ∅ ↔ ( Edg ‘ 𝐺 ) = ∅ ) |
37 |
|
nbgr0edg |
⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( 𝐺 NeighbVtx 𝑣 ) = ∅ ) |
38 |
36 37
|
sylbi |
⊢ ( 𝐸 = ∅ → ( 𝐺 NeighbVtx 𝑣 ) = ∅ ) |
39 |
38
|
eleq2d |
⊢ ( 𝐸 = ∅ → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ∅ ) ) |
40 |
39
|
rexralbidv |
⊢ ( 𝐸 = ∅ → ( ∃ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∃ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) ) |
41 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) ) |
42 |
40 41
|
bitrdi |
⊢ ( 𝐸 = ∅ → ( ∃ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ∅ ) ) ) |
43 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
44 |
|
hash1snb |
⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) ) |
45 |
43 44
|
mp1i |
⊢ ( 𝐸 = ∅ → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) ) |
46 |
35 42 45
|
3bitr4d |
⊢ ( 𝐸 = ∅ → ( ∃ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ♯ ‘ 𝑉 ) = 1 ) ) |
47 |
5 7 46
|
3bitrd |
⊢ ( 𝐸 = ∅ → ( ( UnivVtx ‘ 𝐺 ) ≠ ∅ ↔ ( ♯ ‘ 𝑉 ) = 1 ) ) |