| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nbupgruvtxres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
nbupgruvtxres.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
nbupgruvtxres.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
| 4 |
|
nbupgruvtxres.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 |
| 5 |
1
|
uvtxnbgr |
⊢ ( 𝐾 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) |
| 6 |
1 2 3 4
|
nbupgruvtxres |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) → ( 𝑆 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ) |
| 7 |
6
|
imp |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → ( 𝑆 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) |
| 8 |
|
difpr |
⊢ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) = ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) |
| 9 |
1 2 3 4
|
upgrres1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
| 10 |
9
|
difeq1i |
⊢ ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) = ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) |
| 11 |
10
|
a1i |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) = ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) ) |
| 12 |
8 11
|
eqtr4id |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( 𝑉 ∖ { 𝑁 , 𝐾 } ) = ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → ( 𝑉 ∖ { 𝑁 , 𝐾 } ) = ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) ) |
| 14 |
7 13
|
eqtrd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → ( 𝑆 NeighbVtx 𝐾 ) = ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) |
| 16 |
15 9
|
eleqtrrdi |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝐾 ∈ ( Vtx ‘ 𝑆 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → 𝐾 ∈ ( Vtx ‘ 𝑆 ) ) |
| 18 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
| 19 |
18
|
uvtxnbgrb |
⊢ ( 𝐾 ∈ ( Vtx ‘ 𝑆 ) → ( 𝐾 ∈ ( UnivVtx ‘ 𝑆 ) ↔ ( 𝑆 NeighbVtx 𝐾 ) = ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) ) ) |
| 20 |
17 19
|
syl |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → ( 𝐾 ∈ ( UnivVtx ‘ 𝑆 ) ↔ ( 𝑆 NeighbVtx 𝐾 ) = ( ( Vtx ‘ 𝑆 ) ∖ { 𝐾 } ) ) ) |
| 21 |
14 20
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) ) → 𝐾 ∈ ( UnivVtx ‘ 𝑆 ) ) |
| 22 |
21
|
ex |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( 𝐺 NeighbVtx 𝐾 ) = ( 𝑉 ∖ { 𝐾 } ) → 𝐾 ∈ ( UnivVtx ‘ 𝑆 ) ) ) |
| 23 |
5 22
|
syl5 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( 𝐾 ∈ ( UnivVtx ‘ 𝐺 ) → 𝐾 ∈ ( UnivVtx ‘ 𝑆 ) ) ) |