Step |
Hyp |
Ref |
Expression |
1 |
|
wepwso.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) ) } |
2 |
|
2onn |
⊢ 2o ∈ ω |
3 |
|
nnord |
⊢ ( 2o ∈ ω → Ord 2o ) |
4 |
2 3
|
ax-mp |
⊢ Ord 2o |
5 |
|
ordwe |
⊢ ( Ord 2o → E We 2o ) |
6 |
|
weso |
⊢ ( E We 2o → E Or 2o ) |
7 |
4 5 6
|
mp2b |
⊢ E Or 2o |
8 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
9 |
8
|
wemapso |
⊢ ( ( 𝑅 We 𝐴 ∧ E Or 2o ) → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ) |
10 |
7 9
|
mpan2 |
⊢ ( 𝑅 We 𝐴 → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ) |
12 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
13 |
|
eqid |
⊢ ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) = ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) |
14 |
1 8 13
|
wepwsolem |
⊢ ( 𝐴 ∈ V → ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) Isom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } , 𝑇 ( ( 2o ↑m 𝐴 ) , 𝒫 𝐴 ) ) |
15 |
|
isoso |
⊢ ( ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) Isom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } , 𝑇 ( ( 2o ↑m 𝐴 ) , 𝒫 𝐴 ) → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ↔ 𝑇 Or 𝒫 𝐴 ) ) |
16 |
12 14 15
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ↔ 𝑇 Or 𝒫 𝐴 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ↔ 𝑇 Or 𝒫 𝐴 ) ) |
18 |
11 17
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → 𝑇 Or 𝒫 𝐴 ) |