Metamath Proof Explorer


Theorem wepwso

Description: A well-ordering induces a strict ordering on the power set.EDITORIAL: when well-orderings are set like, this can be strengthened to remove A e. V . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypothesis wepwso.t 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑧𝑦 ∧ ¬ 𝑧𝑥 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤𝑥𝑤𝑦 ) ) ) }
Assertion wepwso ( ( 𝐴𝑉𝑅 We 𝐴 ) → 𝑇 Or 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 wepwso.t 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑧𝑦 ∧ ¬ 𝑧𝑥 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤𝑥𝑤𝑦 ) ) ) }
2 2onn 2o ∈ ω
3 nnord ( 2o ∈ ω → Ord 2o )
4 2 3 ax-mp Ord 2o
5 ordwe ( Ord 2o → E We 2o )
6 weso ( E We 2o → E Or 2o )
7 4 5 6 mp2b E Or 2o
8 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) }
9 8 wemapso ( ( 𝑅 We 𝐴 ∧ E Or 2o ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } Or ( 2om 𝐴 ) )
10 7 9 mpan2 ( 𝑅 We 𝐴 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } Or ( 2om 𝐴 ) )
11 10 adantl ( ( 𝐴𝑉𝑅 We 𝐴 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } Or ( 2om 𝐴 ) )
12 elex ( 𝐴𝑉𝐴 ∈ V )
13 eqid ( 𝑎 ∈ ( 2om 𝐴 ) ↦ ( 𝑎 “ { 1o } ) ) = ( 𝑎 ∈ ( 2om 𝐴 ) ↦ ( 𝑎 “ { 1o } ) )
14 1 8 13 wepwsolem ( 𝐴 ∈ V → ( 𝑎 ∈ ( 2om 𝐴 ) ↦ ( 𝑎 “ { 1o } ) ) Isom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } , 𝑇 ( ( 2om 𝐴 ) , 𝒫 𝐴 ) )
15 isoso ( ( 𝑎 ∈ ( 2om 𝐴 ) ↦ ( 𝑎 “ { 1o } ) ) Isom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } , 𝑇 ( ( 2om 𝐴 ) , 𝒫 𝐴 ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } Or ( 2om 𝐴 ) ↔ 𝑇 Or 𝒫 𝐴 ) )
16 12 14 15 3syl ( 𝐴𝑉 → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } Or ( 2om 𝐴 ) ↔ 𝑇 Or 𝒫 𝐴 ) )
17 16 adantr ( ( 𝐴𝑉𝑅 We 𝐴 ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) E ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) } Or ( 2om 𝐴 ) ↔ 𝑇 Or 𝒫 𝐴 ) )
18 11 17 mpbid ( ( 𝐴𝑉𝑅 We 𝐴 ) → 𝑇 Or 𝒫 𝐴 )