| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wilth | ⊢ ( 𝑃  ∈  ℙ  ↔  ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 ) ) ) | 
						
							| 2 |  | eluz2nn | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  𝑃  ∈  ℕ ) | 
						
							| 3 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | faccld | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ ) | 
						
							| 6 | 5 | nnzd | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ ) | 
						
							| 7 | 6 | peano2zd | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  ∈  ℤ ) | 
						
							| 8 |  | dvdsval3 | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  ∈  ℤ )  →  ( 𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  ↔  ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0 ) ) | 
						
							| 9 | 2 7 8 | syl2anc | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  ↔  ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0 ) ) | 
						
							| 10 | 9 | biimpar | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0 )  →  𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 ) ) | 
						
							| 11 | 5 | nncnd | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 12 |  | 1cnd | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  1  ∈  ℂ ) | 
						
							| 13 | 11 12 | jca | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ  ∧  1  ∈  ℂ ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0 )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ  ∧  1  ∈  ℂ ) ) | 
						
							| 15 |  | subneg | ⊢ ( ( ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  −  - 1 )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0 )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  −  - 1 )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 ) ) | 
						
							| 17 | 10 16 | breqtrrd | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0 )  →  𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  −  - 1 ) ) | 
						
							| 18 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  - 1  ∈  ℤ ) | 
						
							| 20 | 2 6 19 | 3jca | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑃  ∈  ℕ  ∧  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ  ∧  - 1  ∈  ℤ ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0 )  →  ( 𝑃  ∈  ℕ  ∧  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ  ∧  - 1  ∈  ℤ ) ) | 
						
							| 22 |  | moddvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ  ∧  - 1  ∈  ℤ )  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  −  - 1 ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0 )  →  ( ( ( ! ‘ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  −  - 1 ) ) ) | 
						
							| 24 | 17 23 | mpbird | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0 )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  mod  𝑃 )  =  0  →  ( ( ! ‘ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 26 | 9 25 | sylbid | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 ) )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 28 | 1 27 | sylbi | ⊢ ( 𝑃  ∈  ℙ  →  ( ( ! ‘ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) |