| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wilthlem.t | ⊢ 𝑇  =  ( mulGrp ‘ ℂfld ) | 
						
							| 2 |  | wilthlem.a | ⊢ 𝐴  =  { 𝑥  ∈  𝒫  ( 1 ... ( 𝑃  −  1 ) )  ∣  ( ( 𝑃  −  1 )  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  𝑥 ) } | 
						
							| 3 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 4 |  | uz2m1nn | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑃  −  1 )  ∈  ℕ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  −  1 )  ∈  ℕ ) | 
						
							| 6 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 7 | 5 6 | eleqtrdi | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  −  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 8 |  | eluzfz2 | ⊢ ( ( 𝑃  −  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑃  −  1 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  −  1 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 11 |  | elfzelz | ⊢ ( 𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) )  →  𝑦  ∈  ℤ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  𝑦  ∈  ℤ ) | 
						
							| 13 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 14 |  | fzm1ndvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  ¬  𝑃  ∥  𝑦 ) | 
						
							| 15 | 13 14 | sylan | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  ¬  𝑃  ∥  𝑦 ) | 
						
							| 16 |  | eqid | ⊢ ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  =  ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 ) | 
						
							| 17 | 16 | prmdiv | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ℤ  ∧  ¬  𝑃  ∥  𝑦 )  →  ( ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  𝑃  ∥  ( ( 𝑦  ·  ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 ) )  −  1 ) ) ) | 
						
							| 18 | 10 12 15 17 | syl3anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  ( ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  𝑃  ∥  ( ( 𝑦  ·  ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 ) )  −  1 ) ) ) | 
						
							| 19 | 18 | simpld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( 𝑃  ∈  ℙ  →  ∀ 𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 21 |  | ovex | ⊢ ( 1 ... ( 𝑃  −  1 ) )  ∈  V | 
						
							| 22 | 21 | pwid | ⊢ ( 1 ... ( 𝑃  −  1 ) )  ∈  𝒫  ( 1 ... ( 𝑃  −  1 ) ) | 
						
							| 23 |  | eleq2 | ⊢ ( 𝑥  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( ( 𝑃  −  1 )  ∈  𝑥  ↔  ( 𝑃  −  1 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 24 |  | eleq2 | ⊢ ( 𝑥  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  𝑥  ↔  ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 25 | 24 | raleqbi1dv | ⊢ ( 𝑥  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( ∀ 𝑦  ∈  𝑥 ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  𝑥  ↔  ∀ 𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 26 | 23 25 | anbi12d | ⊢ ( 𝑥  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( ( ( 𝑃  −  1 )  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  𝑥 )  ↔  ( ( 𝑃  −  1 )  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 27 | 26 2 | elrab2 | ⊢ ( ( 1 ... ( 𝑃  −  1 ) )  ∈  𝐴  ↔  ( ( 1 ... ( 𝑃  −  1 ) )  ∈  𝒫  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑃  −  1 )  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 28 | 22 27 | mpbiran | ⊢ ( ( 1 ... ( 𝑃  −  1 ) )  ∈  𝐴  ↔  ( ( 𝑃  −  1 )  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ∀ 𝑦  ∈  ( 1 ... ( 𝑃  −  1 ) ) ( ( 𝑦 ↑ ( 𝑃  −  2 ) )  mod  𝑃 )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 29 | 9 20 28 | sylanbrc | ⊢ ( 𝑃  ∈  ℙ  →  ( 1 ... ( 𝑃  −  1 ) )  ∈  𝐴 ) | 
						
							| 30 |  | fzfi | ⊢ ( 1 ... ( 𝑃  −  1 ) )  ∈  Fin | 
						
							| 31 |  | eleq1 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  ∈  𝐴  ↔  𝑡  ∈  𝐴 ) ) | 
						
							| 32 |  | reseq2 | ⊢ ( 𝑠  =  𝑡  →  (  I   ↾  𝑠 )  =  (  I   ↾  𝑡 ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝑠  =  𝑡  →  ( 𝑇  Σg  (  I   ↾  𝑠 ) )  =  ( 𝑇  Σg  (  I   ↾  𝑡 ) ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( ( 𝑇  Σg  (  I   ↾  𝑡 ) )  mod  𝑃 ) ) | 
						
							| 35 | 34 | eqeq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  ( ( 𝑇  Σg  (  I   ↾  𝑡 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 36 | 31 35 | imbi12d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  ↔  ( 𝑡  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑡 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) | 
						
							| 37 | 36 | imbi2d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑃  ∈  ℙ  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) )  ↔  ( 𝑃  ∈  ℙ  →  ( 𝑡  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑡 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) ) | 
						
							| 38 |  | eleq1 | ⊢ ( 𝑠  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( 𝑠  ∈  𝐴  ↔  ( 1 ... ( 𝑃  −  1 ) )  ∈  𝐴 ) ) | 
						
							| 39 |  | reseq2 | ⊢ ( 𝑠  =  ( 1 ... ( 𝑃  −  1 ) )  →  (  I   ↾  𝑠 )  =  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝑠  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( 𝑇  Σg  (  I   ↾  𝑠 ) )  =  ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( 𝑠  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  mod  𝑃 ) ) | 
						
							| 42 | 41 | eqeq1d | ⊢ ( 𝑠  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 43 | 38 42 | imbi12d | ⊢ ( 𝑠  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  ↔  ( ( 1 ... ( 𝑃  −  1 ) )  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) | 
						
							| 44 | 43 | imbi2d | ⊢ ( 𝑠  =  ( 1 ... ( 𝑃  −  1 ) )  →  ( ( 𝑃  ∈  ℙ  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) )  ↔  ( 𝑃  ∈  ℙ  →  ( ( 1 ... ( 𝑃  −  1 ) )  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) ) | 
						
							| 45 |  | bi2.04 | ⊢ ( ( 𝑠  ⊊  𝑡  →  ( 𝑃  ∈  ℙ  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) )  ↔  ( 𝑃  ∈  ℙ  →  ( 𝑠  ⊊  𝑡  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) ) | 
						
							| 46 |  | pm2.27 | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑃  ∈  ℙ  →  ( 𝑠  ⊊  𝑡  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) )  →  ( 𝑠  ⊊  𝑡  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) ) | 
						
							| 47 | 46 | com34 | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑃  ∈  ℙ  →  ( 𝑠  ⊊  𝑡  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) )  →  ( 𝑠  ∈  𝐴  →  ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) ) | 
						
							| 48 | 45 47 | biimtrid | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑠  ⊊  𝑡  →  ( 𝑃  ∈  ℙ  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) )  →  ( 𝑠  ∈  𝐴  →  ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) ) | 
						
							| 49 | 48 | alimdv | ⊢ ( 𝑃  ∈  ℙ  →  ( ∀ 𝑠 ( 𝑠  ⊊  𝑡  →  ( 𝑃  ∈  ℙ  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) )  →  ∀ 𝑠 ( 𝑠  ∈  𝐴  →  ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) ) | 
						
							| 50 |  | df-ral | ⊢ ( ∀ 𝑠  ∈  𝐴 ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  ↔  ∀ 𝑠 ( 𝑠  ∈  𝐴  →  ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) | 
						
							| 51 | 49 50 | imbitrrdi | ⊢ ( 𝑃  ∈  ℙ  →  ( ∀ 𝑠 ( 𝑠  ⊊  𝑡  →  ( 𝑃  ∈  ℙ  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) )  →  ∀ 𝑠  ∈  𝐴 ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) | 
						
							| 52 |  | simp1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ∀ 𝑠  ∈  𝐴 ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  ∧  𝑡  ∈  𝐴 )  →  𝑃  ∈  ℙ ) | 
						
							| 53 |  | simp3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ∀ 𝑠  ∈  𝐴 ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  ∧  𝑡  ∈  𝐴 )  →  𝑡  ∈  𝐴 ) | 
						
							| 54 |  | simp2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ∀ 𝑠  ∈  𝐴 ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  ∧  𝑡  ∈  𝐴 )  →  ∀ 𝑠  ∈  𝐴 ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 55 | 1 2 52 53 54 | wilthlem2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ∀ 𝑠  ∈  𝐴 ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  ∧  𝑡  ∈  𝐴 )  →  ( ( 𝑇  Σg  (  I   ↾  𝑡 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 56 | 55 | 3exp | ⊢ ( 𝑃  ∈  ℙ  →  ( ∀ 𝑠  ∈  𝐴 ( 𝑠  ⊊  𝑡  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( 𝑡  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑡 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) | 
						
							| 57 | 51 56 | syldc | ⊢ ( ∀ 𝑠 ( 𝑠  ⊊  𝑡  →  ( 𝑃  ∈  ℙ  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) )  →  ( 𝑃  ∈  ℙ  →  ( 𝑡  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑡 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) | 
						
							| 58 | 57 | a1i | ⊢ ( 𝑡  ∈  Fin  →  ( ∀ 𝑠 ( 𝑠  ⊊  𝑡  →  ( 𝑃  ∈  ℙ  →  ( 𝑠  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑠 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) )  →  ( 𝑃  ∈  ℙ  →  ( 𝑡  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  𝑡 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) ) | 
						
							| 59 | 37 44 58 | findcard3 | ⊢ ( ( 1 ... ( 𝑃  −  1 ) )  ∈  Fin  →  ( 𝑃  ∈  ℙ  →  ( ( 1 ... ( 𝑃  −  1 ) )  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) ) | 
						
							| 60 | 30 59 | ax-mp | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 1 ... ( 𝑃  −  1 ) )  ∈  𝐴  →  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 61 | 29 60 | mpd | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 62 |  | cnfld1 | ⊢ 1  =  ( 1r ‘ ℂfld ) | 
						
							| 63 | 1 62 | ringidval | ⊢ 1  =  ( 0g ‘ 𝑇 ) | 
						
							| 64 |  | cncrng | ⊢ ℂfld  ∈  CRing | 
						
							| 65 | 1 | crngmgp | ⊢ ( ℂfld  ∈  CRing  →  𝑇  ∈  CMnd ) | 
						
							| 66 | 64 65 | mp1i | ⊢ ( 𝑃  ∈  ℙ  →  𝑇  ∈  CMnd ) | 
						
							| 67 | 30 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  ( 1 ... ( 𝑃  −  1 ) )  ∈  Fin ) | 
						
							| 68 |  | zsubrg | ⊢ ℤ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 69 | 1 | subrgsubm | ⊢ ( ℤ  ∈  ( SubRing ‘ ℂfld )  →  ℤ  ∈  ( SubMnd ‘ 𝑇 ) ) | 
						
							| 70 | 68 69 | mp1i | ⊢ ( 𝑃  ∈  ℙ  →  ℤ  ∈  ( SubMnd ‘ 𝑇 ) ) | 
						
							| 71 |  | f1oi | ⊢ (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) –1-1-onto→ ( 1 ... ( 𝑃  −  1 ) ) | 
						
							| 72 |  | f1of | ⊢ ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) –1-1-onto→ ( 1 ... ( 𝑃  −  1 ) )  →  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 73 | 71 72 | ax-mp | ⊢ (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ( 1 ... ( 𝑃  −  1 ) ) | 
						
							| 74 |  | fzssz | ⊢ ( 1 ... ( 𝑃  −  1 ) )  ⊆  ℤ | 
						
							| 75 |  | fss | ⊢ ( ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ( 1 ... ( 𝑃  −  1 ) )  ∧  ( 1 ... ( 𝑃  −  1 ) )  ⊆  ℤ )  →  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ℤ ) | 
						
							| 76 | 73 74 75 | mp2an | ⊢ (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ℤ | 
						
							| 77 | 76 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ℤ ) | 
						
							| 78 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 79 | 78 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  1  ∈  V ) | 
						
							| 80 | 77 67 79 | fdmfifsupp | ⊢ ( 𝑃  ∈  ℙ  →  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  finSupp  1 ) | 
						
							| 81 | 63 66 67 70 77 80 | gsumsubmcl | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  ∈  ℤ ) | 
						
							| 82 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 83 |  | znegcl | ⊢ ( 1  ∈  ℤ  →  - 1  ∈  ℤ ) | 
						
							| 84 | 82 83 | mp1i | ⊢ ( 𝑃  ∈  ℙ  →  - 1  ∈  ℤ ) | 
						
							| 85 |  | moddvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  ∈  ℤ  ∧  - 1  ∈  ℤ )  →  ( ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  𝑃  ∥  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  −  - 1 ) ) ) | 
						
							| 86 | 13 81 84 85 | syl3anc | ⊢ ( 𝑃  ∈  ℙ  →  ( ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  𝑃  ∥  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  −  - 1 ) ) ) | 
						
							| 87 | 61 86 | mpbid | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∥  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  −  - 1 ) ) | 
						
							| 88 |  | fcoi1 | ⊢ ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ( 1 ... ( 𝑃  −  1 ) )  →  ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ∘  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  =  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 89 | 73 88 | ax-mp | ⊢ ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ∘  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  =  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 90 | 89 | fveq1i | ⊢ ( ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ∘  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) ‘ 𝑘 )  =  ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ‘ 𝑘 ) | 
						
							| 91 |  | fvres | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑃  −  1 ) )  →  ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ‘ 𝑘 )  =  (  I  ‘ 𝑘 ) ) | 
						
							| 92 | 90 91 | eqtrid | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑃  −  1 ) )  →  ( ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ∘  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) ‘ 𝑘 )  =  (  I  ‘ 𝑘 ) ) | 
						
							| 93 | 92 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑘  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  ( ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ∘  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) ‘ 𝑘 )  =  (  I  ‘ 𝑘 ) ) | 
						
							| 94 | 7 93 | seqfveq | ⊢ ( 𝑃  ∈  ℙ  →  ( seq 1 (  ·  ,  ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ∘  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) ) ‘ ( 𝑃  −  1 ) )  =  ( seq 1 (  ·  ,   I  ) ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 95 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 96 | 1 95 | mgpbas | ⊢ ℂ  =  ( Base ‘ 𝑇 ) | 
						
							| 97 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 98 | 1 97 | mgpplusg | ⊢  ·   =  ( +g ‘ 𝑇 ) | 
						
							| 99 |  | eqid | ⊢ ( Cntz ‘ 𝑇 )  =  ( Cntz ‘ 𝑇 ) | 
						
							| 100 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 101 | 1 | ringmgp | ⊢ ( ℂfld  ∈  Ring  →  𝑇  ∈  Mnd ) | 
						
							| 102 | 100 101 | mp1i | ⊢ ( 𝑃  ∈  ℙ  →  𝑇  ∈  Mnd ) | 
						
							| 103 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 104 |  | fss | ⊢ ( ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ℤ  ∧  ℤ  ⊆  ℂ )  →  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ℂ ) | 
						
							| 105 | 76 103 104 | mp2an | ⊢ (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ℂ | 
						
							| 106 | 105 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) ⟶ ℂ ) | 
						
							| 107 | 96 99 66 106 | cntzcmnf | ⊢ ( 𝑃  ∈  ℙ  →  ran  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ⊆  ( ( Cntz ‘ 𝑇 ) ‘ ran  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 108 |  | f1of1 | ⊢ ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) –1-1-onto→ ( 1 ... ( 𝑃  −  1 ) )  →  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) –1-1→ ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 109 | 71 108 | mp1i | ⊢ ( 𝑃  ∈  ℙ  →  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) : ( 1 ... ( 𝑃  −  1 ) ) –1-1→ ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 110 |  | suppssdm | ⊢ ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  supp  1 )  ⊆  dom  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 111 |  | dmresi | ⊢ dom  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  =  ( 1 ... ( 𝑃  −  1 ) ) | 
						
							| 112 | 110 111 | sseqtri | ⊢ ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  supp  1 )  ⊆  ( 1 ... ( 𝑃  −  1 ) ) | 
						
							| 113 |  | rnresi | ⊢ ran  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  =  ( 1 ... ( 𝑃  −  1 ) ) | 
						
							| 114 | 112 113 | sseqtrri | ⊢ ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  supp  1 )  ⊆  ran  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 115 | 114 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  supp  1 )  ⊆  ran  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 116 |  | eqid | ⊢ ( ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ∘  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  supp  1 )  =  ( ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ∘  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  supp  1 ) | 
						
							| 117 | 96 63 98 99 102 67 106 107 5 109 115 116 | gsumval3 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  =  ( seq 1 (  ·  ,  ( (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) )  ∘  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) ) ) ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 118 |  | facnn | ⊢ ( ( 𝑃  −  1 )  ∈  ℕ  →  ( ! ‘ ( 𝑃  −  1 ) )  =  ( seq 1 (  ·  ,   I  ) ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 119 | 5 118 | syl | ⊢ ( 𝑃  ∈  ℙ  →  ( ! ‘ ( 𝑃  −  1 ) )  =  ( seq 1 (  ·  ,   I  ) ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 120 | 94 117 119 | 3eqtr4d | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  =  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 121 | 120 | oveq1d | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  −  - 1 )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  −  - 1 ) ) | 
						
							| 122 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 123 | 13 122 | syl | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 124 | 123 | faccld | ⊢ ( 𝑃  ∈  ℙ  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ ) | 
						
							| 125 | 124 | nncnd | ⊢ ( 𝑃  ∈  ℙ  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 126 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 127 |  | subneg | ⊢ ( ( ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  −  - 1 )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 ) ) | 
						
							| 128 | 125 126 127 | sylancl | ⊢ ( 𝑃  ∈  ℙ  →  ( ( ! ‘ ( 𝑃  −  1 ) )  −  - 1 )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 ) ) | 
						
							| 129 | 121 128 | eqtrd | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑇  Σg  (  I   ↾  ( 1 ... ( 𝑃  −  1 ) ) ) )  −  - 1 )  =  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 ) ) | 
						
							| 130 | 87 129 | breqtrd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∥  ( ( ! ‘ ( 𝑃  −  1 ) )  +  1 ) ) |