| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wilthlem.t |  |-  T = ( mulGrp ` CCfld ) | 
						
							| 2 |  | wilthlem.a |  |-  A = { x e. ~P ( 1 ... ( P - 1 ) ) | ( ( P - 1 ) e. x /\ A. y e. x ( ( y ^ ( P - 2 ) ) mod P ) e. x ) } | 
						
							| 3 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 4 |  | uz2m1nn |  |-  ( P e. ( ZZ>= ` 2 ) -> ( P - 1 ) e. NN ) | 
						
							| 5 | 3 4 | syl |  |-  ( P e. Prime -> ( P - 1 ) e. NN ) | 
						
							| 6 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 7 | 5 6 | eleqtrdi |  |-  ( P e. Prime -> ( P - 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 8 |  | eluzfz2 |  |-  ( ( P - 1 ) e. ( ZZ>= ` 1 ) -> ( P - 1 ) e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( P e. Prime -> ( P - 1 ) e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 10 |  | simpl |  |-  ( ( P e. Prime /\ y e. ( 1 ... ( P - 1 ) ) ) -> P e. Prime ) | 
						
							| 11 |  | elfzelz |  |-  ( y e. ( 1 ... ( P - 1 ) ) -> y e. ZZ ) | 
						
							| 12 | 11 | adantl |  |-  ( ( P e. Prime /\ y e. ( 1 ... ( P - 1 ) ) ) -> y e. ZZ ) | 
						
							| 13 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 14 |  | fzm1ndvds |  |-  ( ( P e. NN /\ y e. ( 1 ... ( P - 1 ) ) ) -> -. P || y ) | 
						
							| 15 | 13 14 | sylan |  |-  ( ( P e. Prime /\ y e. ( 1 ... ( P - 1 ) ) ) -> -. P || y ) | 
						
							| 16 |  | eqid |  |-  ( ( y ^ ( P - 2 ) ) mod P ) = ( ( y ^ ( P - 2 ) ) mod P ) | 
						
							| 17 | 16 | prmdiv |  |-  ( ( P e. Prime /\ y e. ZZ /\ -. P || y ) -> ( ( ( y ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ P || ( ( y x. ( ( y ^ ( P - 2 ) ) mod P ) ) - 1 ) ) ) | 
						
							| 18 | 10 12 15 17 | syl3anc |  |-  ( ( P e. Prime /\ y e. ( 1 ... ( P - 1 ) ) ) -> ( ( ( y ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ P || ( ( y x. ( ( y ^ ( P - 2 ) ) mod P ) ) - 1 ) ) ) | 
						
							| 19 | 18 | simpld |  |-  ( ( P e. Prime /\ y e. ( 1 ... ( P - 1 ) ) ) -> ( ( y ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( P e. Prime -> A. y e. ( 1 ... ( P - 1 ) ) ( ( y ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 21 |  | ovex |  |-  ( 1 ... ( P - 1 ) ) e. _V | 
						
							| 22 | 21 | pwid |  |-  ( 1 ... ( P - 1 ) ) e. ~P ( 1 ... ( P - 1 ) ) | 
						
							| 23 |  | eleq2 |  |-  ( x = ( 1 ... ( P - 1 ) ) -> ( ( P - 1 ) e. x <-> ( P - 1 ) e. ( 1 ... ( P - 1 ) ) ) ) | 
						
							| 24 |  | eleq2 |  |-  ( x = ( 1 ... ( P - 1 ) ) -> ( ( ( y ^ ( P - 2 ) ) mod P ) e. x <-> ( ( y ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) ) ) | 
						
							| 25 | 24 | raleqbi1dv |  |-  ( x = ( 1 ... ( P - 1 ) ) -> ( A. y e. x ( ( y ^ ( P - 2 ) ) mod P ) e. x <-> A. y e. ( 1 ... ( P - 1 ) ) ( ( y ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) ) ) | 
						
							| 26 | 23 25 | anbi12d |  |-  ( x = ( 1 ... ( P - 1 ) ) -> ( ( ( P - 1 ) e. x /\ A. y e. x ( ( y ^ ( P - 2 ) ) mod P ) e. x ) <-> ( ( P - 1 ) e. ( 1 ... ( P - 1 ) ) /\ A. y e. ( 1 ... ( P - 1 ) ) ( ( y ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) ) ) ) | 
						
							| 27 | 26 2 | elrab2 |  |-  ( ( 1 ... ( P - 1 ) ) e. A <-> ( ( 1 ... ( P - 1 ) ) e. ~P ( 1 ... ( P - 1 ) ) /\ ( ( P - 1 ) e. ( 1 ... ( P - 1 ) ) /\ A. y e. ( 1 ... ( P - 1 ) ) ( ( y ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) ) ) ) | 
						
							| 28 | 22 27 | mpbiran |  |-  ( ( 1 ... ( P - 1 ) ) e. A <-> ( ( P - 1 ) e. ( 1 ... ( P - 1 ) ) /\ A. y e. ( 1 ... ( P - 1 ) ) ( ( y ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) ) ) | 
						
							| 29 | 9 20 28 | sylanbrc |  |-  ( P e. Prime -> ( 1 ... ( P - 1 ) ) e. A ) | 
						
							| 30 |  | fzfi |  |-  ( 1 ... ( P - 1 ) ) e. Fin | 
						
							| 31 |  | eleq1 |  |-  ( s = t -> ( s e. A <-> t e. A ) ) | 
						
							| 32 |  | reseq2 |  |-  ( s = t -> ( _I |` s ) = ( _I |` t ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( s = t -> ( T gsum ( _I |` s ) ) = ( T gsum ( _I |` t ) ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( s = t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( ( T gsum ( _I |` t ) ) mod P ) ) | 
						
							| 35 | 34 | eqeq1d |  |-  ( s = t -> ( ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) <-> ( ( T gsum ( _I |` t ) ) mod P ) = ( -u 1 mod P ) ) ) | 
						
							| 36 | 31 35 | imbi12d |  |-  ( s = t -> ( ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) <-> ( t e. A -> ( ( T gsum ( _I |` t ) ) mod P ) = ( -u 1 mod P ) ) ) ) | 
						
							| 37 | 36 | imbi2d |  |-  ( s = t -> ( ( P e. Prime -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) <-> ( P e. Prime -> ( t e. A -> ( ( T gsum ( _I |` t ) ) mod P ) = ( -u 1 mod P ) ) ) ) ) | 
						
							| 38 |  | eleq1 |  |-  ( s = ( 1 ... ( P - 1 ) ) -> ( s e. A <-> ( 1 ... ( P - 1 ) ) e. A ) ) | 
						
							| 39 |  | reseq2 |  |-  ( s = ( 1 ... ( P - 1 ) ) -> ( _I |` s ) = ( _I |` ( 1 ... ( P - 1 ) ) ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( s = ( 1 ... ( P - 1 ) ) -> ( T gsum ( _I |` s ) ) = ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( s = ( 1 ... ( P - 1 ) ) -> ( ( T gsum ( _I |` s ) ) mod P ) = ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) mod P ) ) | 
						
							| 42 | 41 | eqeq1d |  |-  ( s = ( 1 ... ( P - 1 ) ) -> ( ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) <-> ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) mod P ) = ( -u 1 mod P ) ) ) | 
						
							| 43 | 38 42 | imbi12d |  |-  ( s = ( 1 ... ( P - 1 ) ) -> ( ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) <-> ( ( 1 ... ( P - 1 ) ) e. A -> ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) mod P ) = ( -u 1 mod P ) ) ) ) | 
						
							| 44 | 43 | imbi2d |  |-  ( s = ( 1 ... ( P - 1 ) ) -> ( ( P e. Prime -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) <-> ( P e. Prime -> ( ( 1 ... ( P - 1 ) ) e. A -> ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) mod P ) = ( -u 1 mod P ) ) ) ) ) | 
						
							| 45 |  | bi2.04 |  |-  ( ( s C. t -> ( P e. Prime -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) <-> ( P e. Prime -> ( s C. t -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) ) | 
						
							| 46 |  | pm2.27 |  |-  ( P e. Prime -> ( ( P e. Prime -> ( s C. t -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) -> ( s C. t -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) ) | 
						
							| 47 | 46 | com34 |  |-  ( P e. Prime -> ( ( P e. Prime -> ( s C. t -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) -> ( s e. A -> ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) ) | 
						
							| 48 | 45 47 | biimtrid |  |-  ( P e. Prime -> ( ( s C. t -> ( P e. Prime -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) -> ( s e. A -> ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) ) | 
						
							| 49 | 48 | alimdv |  |-  ( P e. Prime -> ( A. s ( s C. t -> ( P e. Prime -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) -> A. s ( s e. A -> ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) ) | 
						
							| 50 |  | df-ral |  |-  ( A. s e. A ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) <-> A. s ( s e. A -> ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) | 
						
							| 51 | 49 50 | imbitrrdi |  |-  ( P e. Prime -> ( A. s ( s C. t -> ( P e. Prime -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) -> A. s e. A ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) | 
						
							| 52 |  | simp1 |  |-  ( ( P e. Prime /\ A. s e. A ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) /\ t e. A ) -> P e. Prime ) | 
						
							| 53 |  | simp3 |  |-  ( ( P e. Prime /\ A. s e. A ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) /\ t e. A ) -> t e. A ) | 
						
							| 54 |  | simp2 |  |-  ( ( P e. Prime /\ A. s e. A ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) /\ t e. A ) -> A. s e. A ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) | 
						
							| 55 | 1 2 52 53 54 | wilthlem2 |  |-  ( ( P e. Prime /\ A. s e. A ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) /\ t e. A ) -> ( ( T gsum ( _I |` t ) ) mod P ) = ( -u 1 mod P ) ) | 
						
							| 56 | 55 | 3exp |  |-  ( P e. Prime -> ( A. s e. A ( s C. t -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) -> ( t e. A -> ( ( T gsum ( _I |` t ) ) mod P ) = ( -u 1 mod P ) ) ) ) | 
						
							| 57 | 51 56 | syldc |  |-  ( A. s ( s C. t -> ( P e. Prime -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) -> ( P e. Prime -> ( t e. A -> ( ( T gsum ( _I |` t ) ) mod P ) = ( -u 1 mod P ) ) ) ) | 
						
							| 58 | 57 | a1i |  |-  ( t e. Fin -> ( A. s ( s C. t -> ( P e. Prime -> ( s e. A -> ( ( T gsum ( _I |` s ) ) mod P ) = ( -u 1 mod P ) ) ) ) -> ( P e. Prime -> ( t e. A -> ( ( T gsum ( _I |` t ) ) mod P ) = ( -u 1 mod P ) ) ) ) ) | 
						
							| 59 | 37 44 58 | findcard3 |  |-  ( ( 1 ... ( P - 1 ) ) e. Fin -> ( P e. Prime -> ( ( 1 ... ( P - 1 ) ) e. A -> ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) mod P ) = ( -u 1 mod P ) ) ) ) | 
						
							| 60 | 30 59 | ax-mp |  |-  ( P e. Prime -> ( ( 1 ... ( P - 1 ) ) e. A -> ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) mod P ) = ( -u 1 mod P ) ) ) | 
						
							| 61 | 29 60 | mpd |  |-  ( P e. Prime -> ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) mod P ) = ( -u 1 mod P ) ) | 
						
							| 62 |  | cnfld1 |  |-  1 = ( 1r ` CCfld ) | 
						
							| 63 | 1 62 | ringidval |  |-  1 = ( 0g ` T ) | 
						
							| 64 |  | cncrng |  |-  CCfld e. CRing | 
						
							| 65 | 1 | crngmgp |  |-  ( CCfld e. CRing -> T e. CMnd ) | 
						
							| 66 | 64 65 | mp1i |  |-  ( P e. Prime -> T e. CMnd ) | 
						
							| 67 | 30 | a1i |  |-  ( P e. Prime -> ( 1 ... ( P - 1 ) ) e. Fin ) | 
						
							| 68 |  | zsubrg |  |-  ZZ e. ( SubRing ` CCfld ) | 
						
							| 69 | 1 | subrgsubm |  |-  ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubMnd ` T ) ) | 
						
							| 70 | 68 69 | mp1i |  |-  ( P e. Prime -> ZZ e. ( SubMnd ` T ) ) | 
						
							| 71 |  | f1oi |  |-  ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) -1-1-onto-> ( 1 ... ( P - 1 ) ) | 
						
							| 72 |  | f1of |  |-  ( ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) -1-1-onto-> ( 1 ... ( P - 1 ) ) -> ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> ( 1 ... ( P - 1 ) ) ) | 
						
							| 73 | 71 72 | ax-mp |  |-  ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> ( 1 ... ( P - 1 ) ) | 
						
							| 74 |  | fzssz |  |-  ( 1 ... ( P - 1 ) ) C_ ZZ | 
						
							| 75 |  | fss |  |-  ( ( ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> ( 1 ... ( P - 1 ) ) /\ ( 1 ... ( P - 1 ) ) C_ ZZ ) -> ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> ZZ ) | 
						
							| 76 | 73 74 75 | mp2an |  |-  ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> ZZ | 
						
							| 77 | 76 | a1i |  |-  ( P e. Prime -> ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> ZZ ) | 
						
							| 78 |  | 1ex |  |-  1 e. _V | 
						
							| 79 | 78 | a1i |  |-  ( P e. Prime -> 1 e. _V ) | 
						
							| 80 | 77 67 79 | fdmfifsupp |  |-  ( P e. Prime -> ( _I |` ( 1 ... ( P - 1 ) ) ) finSupp 1 ) | 
						
							| 81 | 63 66 67 70 77 80 | gsumsubmcl |  |-  ( P e. Prime -> ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) e. ZZ ) | 
						
							| 82 |  | 1z |  |-  1 e. ZZ | 
						
							| 83 |  | znegcl |  |-  ( 1 e. ZZ -> -u 1 e. ZZ ) | 
						
							| 84 | 82 83 | mp1i |  |-  ( P e. Prime -> -u 1 e. ZZ ) | 
						
							| 85 |  | moddvds |  |-  ( ( P e. NN /\ ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) e. ZZ /\ -u 1 e. ZZ ) -> ( ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) mod P ) = ( -u 1 mod P ) <-> P || ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) - -u 1 ) ) ) | 
						
							| 86 | 13 81 84 85 | syl3anc |  |-  ( P e. Prime -> ( ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) mod P ) = ( -u 1 mod P ) <-> P || ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) - -u 1 ) ) ) | 
						
							| 87 | 61 86 | mpbid |  |-  ( P e. Prime -> P || ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) - -u 1 ) ) | 
						
							| 88 |  | fcoi1 |  |-  ( ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> ( 1 ... ( P - 1 ) ) -> ( ( _I |` ( 1 ... ( P - 1 ) ) ) o. ( _I |` ( 1 ... ( P - 1 ) ) ) ) = ( _I |` ( 1 ... ( P - 1 ) ) ) ) | 
						
							| 89 | 73 88 | ax-mp |  |-  ( ( _I |` ( 1 ... ( P - 1 ) ) ) o. ( _I |` ( 1 ... ( P - 1 ) ) ) ) = ( _I |` ( 1 ... ( P - 1 ) ) ) | 
						
							| 90 | 89 | fveq1i |  |-  ( ( ( _I |` ( 1 ... ( P - 1 ) ) ) o. ( _I |` ( 1 ... ( P - 1 ) ) ) ) ` k ) = ( ( _I |` ( 1 ... ( P - 1 ) ) ) ` k ) | 
						
							| 91 |  | fvres |  |-  ( k e. ( 1 ... ( P - 1 ) ) -> ( ( _I |` ( 1 ... ( P - 1 ) ) ) ` k ) = ( _I ` k ) ) | 
						
							| 92 | 90 91 | eqtrid |  |-  ( k e. ( 1 ... ( P - 1 ) ) -> ( ( ( _I |` ( 1 ... ( P - 1 ) ) ) o. ( _I |` ( 1 ... ( P - 1 ) ) ) ) ` k ) = ( _I ` k ) ) | 
						
							| 93 | 92 | adantl |  |-  ( ( P e. Prime /\ k e. ( 1 ... ( P - 1 ) ) ) -> ( ( ( _I |` ( 1 ... ( P - 1 ) ) ) o. ( _I |` ( 1 ... ( P - 1 ) ) ) ) ` k ) = ( _I ` k ) ) | 
						
							| 94 | 7 93 | seqfveq |  |-  ( P e. Prime -> ( seq 1 ( x. , ( ( _I |` ( 1 ... ( P - 1 ) ) ) o. ( _I |` ( 1 ... ( P - 1 ) ) ) ) ) ` ( P - 1 ) ) = ( seq 1 ( x. , _I ) ` ( P - 1 ) ) ) | 
						
							| 95 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 96 | 1 95 | mgpbas |  |-  CC = ( Base ` T ) | 
						
							| 97 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 98 | 1 97 | mgpplusg |  |-  x. = ( +g ` T ) | 
						
							| 99 |  | eqid |  |-  ( Cntz ` T ) = ( Cntz ` T ) | 
						
							| 100 |  | cnring |  |-  CCfld e. Ring | 
						
							| 101 | 1 | ringmgp |  |-  ( CCfld e. Ring -> T e. Mnd ) | 
						
							| 102 | 100 101 | mp1i |  |-  ( P e. Prime -> T e. Mnd ) | 
						
							| 103 |  | zsscn |  |-  ZZ C_ CC | 
						
							| 104 |  | fss |  |-  ( ( ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> ZZ /\ ZZ C_ CC ) -> ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> CC ) | 
						
							| 105 | 76 103 104 | mp2an |  |-  ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> CC | 
						
							| 106 | 105 | a1i |  |-  ( P e. Prime -> ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) --> CC ) | 
						
							| 107 | 96 99 66 106 | cntzcmnf |  |-  ( P e. Prime -> ran ( _I |` ( 1 ... ( P - 1 ) ) ) C_ ( ( Cntz ` T ) ` ran ( _I |` ( 1 ... ( P - 1 ) ) ) ) ) | 
						
							| 108 |  | f1of1 |  |-  ( ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) -1-1-onto-> ( 1 ... ( P - 1 ) ) -> ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) -1-1-> ( 1 ... ( P - 1 ) ) ) | 
						
							| 109 | 71 108 | mp1i |  |-  ( P e. Prime -> ( _I |` ( 1 ... ( P - 1 ) ) ) : ( 1 ... ( P - 1 ) ) -1-1-> ( 1 ... ( P - 1 ) ) ) | 
						
							| 110 |  | suppssdm |  |-  ( ( _I |` ( 1 ... ( P - 1 ) ) ) supp 1 ) C_ dom ( _I |` ( 1 ... ( P - 1 ) ) ) | 
						
							| 111 |  | dmresi |  |-  dom ( _I |` ( 1 ... ( P - 1 ) ) ) = ( 1 ... ( P - 1 ) ) | 
						
							| 112 | 110 111 | sseqtri |  |-  ( ( _I |` ( 1 ... ( P - 1 ) ) ) supp 1 ) C_ ( 1 ... ( P - 1 ) ) | 
						
							| 113 |  | rnresi |  |-  ran ( _I |` ( 1 ... ( P - 1 ) ) ) = ( 1 ... ( P - 1 ) ) | 
						
							| 114 | 112 113 | sseqtrri |  |-  ( ( _I |` ( 1 ... ( P - 1 ) ) ) supp 1 ) C_ ran ( _I |` ( 1 ... ( P - 1 ) ) ) | 
						
							| 115 | 114 | a1i |  |-  ( P e. Prime -> ( ( _I |` ( 1 ... ( P - 1 ) ) ) supp 1 ) C_ ran ( _I |` ( 1 ... ( P - 1 ) ) ) ) | 
						
							| 116 |  | eqid |  |-  ( ( ( _I |` ( 1 ... ( P - 1 ) ) ) o. ( _I |` ( 1 ... ( P - 1 ) ) ) ) supp 1 ) = ( ( ( _I |` ( 1 ... ( P - 1 ) ) ) o. ( _I |` ( 1 ... ( P - 1 ) ) ) ) supp 1 ) | 
						
							| 117 | 96 63 98 99 102 67 106 107 5 109 115 116 | gsumval3 |  |-  ( P e. Prime -> ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) = ( seq 1 ( x. , ( ( _I |` ( 1 ... ( P - 1 ) ) ) o. ( _I |` ( 1 ... ( P - 1 ) ) ) ) ) ` ( P - 1 ) ) ) | 
						
							| 118 |  | facnn |  |-  ( ( P - 1 ) e. NN -> ( ! ` ( P - 1 ) ) = ( seq 1 ( x. , _I ) ` ( P - 1 ) ) ) | 
						
							| 119 | 5 118 | syl |  |-  ( P e. Prime -> ( ! ` ( P - 1 ) ) = ( seq 1 ( x. , _I ) ` ( P - 1 ) ) ) | 
						
							| 120 | 94 117 119 | 3eqtr4d |  |-  ( P e. Prime -> ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) = ( ! ` ( P - 1 ) ) ) | 
						
							| 121 | 120 | oveq1d |  |-  ( P e. Prime -> ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) - -u 1 ) = ( ( ! ` ( P - 1 ) ) - -u 1 ) ) | 
						
							| 122 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 123 | 13 122 | syl |  |-  ( P e. Prime -> ( P - 1 ) e. NN0 ) | 
						
							| 124 | 123 | faccld |  |-  ( P e. Prime -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 125 | 124 | nncnd |  |-  ( P e. Prime -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 126 |  | ax-1cn |  |-  1 e. CC | 
						
							| 127 |  | subneg |  |-  ( ( ( ! ` ( P - 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ! ` ( P - 1 ) ) - -u 1 ) = ( ( ! ` ( P - 1 ) ) + 1 ) ) | 
						
							| 128 | 125 126 127 | sylancl |  |-  ( P e. Prime -> ( ( ! ` ( P - 1 ) ) - -u 1 ) = ( ( ! ` ( P - 1 ) ) + 1 ) ) | 
						
							| 129 | 121 128 | eqtrd |  |-  ( P e. Prime -> ( ( T gsum ( _I |` ( 1 ... ( P - 1 ) ) ) ) - -u 1 ) = ( ( ! ` ( P - 1 ) ) + 1 ) ) | 
						
							| 130 | 87 129 | breqtrd |  |-  ( P e. Prime -> P || ( ( ! ` ( P - 1 ) ) + 1 ) ) |