| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmdiv.1 |
|- R = ( ( A ^ ( P - 2 ) ) mod P ) |
| 2 |
|
nprmdvds1 |
|- ( P e. Prime -> -. P || 1 ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> -. P || 1 ) |
| 4 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. ZZ ) |
| 6 |
|
simp2 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. ZZ ) |
| 7 |
|
phiprm |
|- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) = ( P - 1 ) ) |
| 9 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. NN ) |
| 11 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 12 |
10 11
|
syl |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) e. NN0 ) |
| 13 |
8 12
|
eqeltrd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) e. NN0 ) |
| 14 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( phi ` P ) e. NN0 ) -> ( A ^ ( phi ` P ) ) e. ZZ ) |
| 15 |
6 13 14
|
syl2anc |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) e. ZZ ) |
| 16 |
|
1z |
|- 1 e. ZZ |
| 17 |
|
zsubcl |
|- ( ( ( A ^ ( phi ` P ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( A ^ ( phi ` P ) ) - 1 ) e. ZZ ) |
| 18 |
15 16 17
|
sylancl |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) - 1 ) e. ZZ ) |
| 19 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 20 |
19
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. ( ZZ>= ` 2 ) ) |
| 21 |
|
uznn0sub |
|- ( P e. ( ZZ>= ` 2 ) -> ( P - 2 ) e. NN0 ) |
| 22 |
20 21
|
syl |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 2 ) e. NN0 ) |
| 23 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( P - 2 ) e. NN0 ) -> ( A ^ ( P - 2 ) ) e. ZZ ) |
| 24 |
6 22 23
|
syl2anc |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. ZZ ) |
| 25 |
24
|
zred |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. RR ) |
| 26 |
25 10
|
nndivred |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) / P ) e. RR ) |
| 27 |
26
|
flcld |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) e. ZZ ) |
| 28 |
6 27
|
zmulcld |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. ZZ ) |
| 29 |
5 28
|
zmulcld |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) e. ZZ ) |
| 30 |
6 5
|
gcdcomd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = ( P gcd A ) ) |
| 31 |
|
coprm |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) |
| 32 |
31
|
biimp3a |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P gcd A ) = 1 ) |
| 33 |
30 32
|
eqtrd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = 1 ) |
| 34 |
|
eulerth |
|- ( ( P e. NN /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
| 35 |
10 6 33 34
|
syl3anc |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
| 36 |
|
1zzd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 1 e. ZZ ) |
| 37 |
|
moddvds |
|- ( ( P e. NN /\ ( A ^ ( phi ` P ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) ) |
| 38 |
10 15 36 37
|
syl3anc |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) ) |
| 39 |
35 38
|
mpbid |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) |
| 40 |
|
dvdsmul1 |
|- ( ( P e. ZZ /\ ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. ZZ ) -> P || ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 41 |
5 28 40
|
syl2anc |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 42 |
5 18 29 39 41
|
dvds2subd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( ( ( A ^ ( phi ` P ) ) - 1 ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 43 |
6
|
zcnd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. CC ) |
| 44 |
24
|
zcnd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. CC ) |
| 45 |
5 27
|
zmulcld |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. ZZ ) |
| 46 |
45
|
zcnd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. CC ) |
| 47 |
43 44 46
|
subdid |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) = ( ( A x. ( A ^ ( P - 2 ) ) ) - ( A x. ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 48 |
10
|
nnrpd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. RR+ ) |
| 49 |
|
modval |
|- ( ( ( A ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) -> ( ( A ^ ( P - 2 ) ) mod P ) = ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 50 |
25 48 49
|
syl2anc |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) mod P ) = ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 51 |
1 50
|
eqtrid |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R = ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 52 |
51
|
oveq2d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. R ) = ( A x. ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 53 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 54 |
53
|
oveq2i |
|- ( P - ( 2 - 1 ) ) = ( P - 1 ) |
| 55 |
8 54
|
eqtr4di |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) = ( P - ( 2 - 1 ) ) ) |
| 56 |
10
|
nncnd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. CC ) |
| 57 |
|
2cnd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 2 e. CC ) |
| 58 |
|
1cnd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 1 e. CC ) |
| 59 |
56 57 58
|
subsubd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - ( 2 - 1 ) ) = ( ( P - 2 ) + 1 ) ) |
| 60 |
55 59
|
eqtrd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) = ( ( P - 2 ) + 1 ) ) |
| 61 |
60
|
oveq2d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) = ( A ^ ( ( P - 2 ) + 1 ) ) ) |
| 62 |
43 22
|
expp1d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( ( P - 2 ) + 1 ) ) = ( ( A ^ ( P - 2 ) ) x. A ) ) |
| 63 |
44 43
|
mulcomd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) x. A ) = ( A x. ( A ^ ( P - 2 ) ) ) ) |
| 64 |
61 62 63
|
3eqtrd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) = ( A x. ( A ^ ( P - 2 ) ) ) ) |
| 65 |
27
|
zcnd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) e. CC ) |
| 66 |
56 43 65
|
mul12d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) = ( A x. ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) |
| 67 |
64 66
|
oveq12d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) = ( ( A x. ( A ^ ( P - 2 ) ) ) - ( A x. ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 68 |
47 52 67
|
3eqtr4d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. R ) = ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 69 |
68
|
oveq1d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. R ) - 1 ) = ( ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) - 1 ) ) |
| 70 |
15
|
zcnd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) e. CC ) |
| 71 |
29
|
zcnd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) e. CC ) |
| 72 |
70 71 58
|
sub32d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) - 1 ) = ( ( ( A ^ ( phi ` P ) ) - 1 ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 73 |
69 72
|
eqtrd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. R ) - 1 ) = ( ( ( A ^ ( phi ` P ) ) - 1 ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) |
| 74 |
42 73
|
breqtrrd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( ( A x. R ) - 1 ) ) |
| 75 |
|
oveq2 |
|- ( R = 0 -> ( A x. R ) = ( A x. 0 ) ) |
| 76 |
75
|
oveq1d |
|- ( R = 0 -> ( ( A x. R ) - 1 ) = ( ( A x. 0 ) - 1 ) ) |
| 77 |
76
|
breq2d |
|- ( R = 0 -> ( P || ( ( A x. R ) - 1 ) <-> P || ( ( A x. 0 ) - 1 ) ) ) |
| 78 |
74 77
|
syl5ibcom |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R = 0 -> P || ( ( A x. 0 ) - 1 ) ) ) |
| 79 |
43
|
mul01d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. 0 ) = 0 ) |
| 80 |
79
|
oveq1d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. 0 ) - 1 ) = ( 0 - 1 ) ) |
| 81 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 82 |
80 81
|
eqtr4di |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. 0 ) - 1 ) = -u 1 ) |
| 83 |
82
|
breq2d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P || ( ( A x. 0 ) - 1 ) <-> P || -u 1 ) ) |
| 84 |
|
dvdsnegb |
|- ( ( P e. ZZ /\ 1 e. ZZ ) -> ( P || 1 <-> P || -u 1 ) ) |
| 85 |
5 16 84
|
sylancl |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P || 1 <-> P || -u 1 ) ) |
| 86 |
83 85
|
bitr4d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P || ( ( A x. 0 ) - 1 ) <-> P || 1 ) ) |
| 87 |
78 86
|
sylibd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R = 0 -> P || 1 ) ) |
| 88 |
3 87
|
mtod |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> -. R = 0 ) |
| 89 |
|
zmodfz |
|- ( ( ( A ^ ( P - 2 ) ) e. ZZ /\ P e. NN ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
| 90 |
24 10 89
|
syl2anc |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
| 91 |
1 90
|
eqeltrid |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R e. ( 0 ... ( P - 1 ) ) ) |
| 92 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 93 |
12 92
|
eleqtrdi |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) e. ( ZZ>= ` 0 ) ) |
| 94 |
|
elfzp12 |
|- ( ( P - 1 ) e. ( ZZ>= ` 0 ) -> ( R e. ( 0 ... ( P - 1 ) ) <-> ( R = 0 \/ R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) ) |
| 95 |
93 94
|
syl |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 0 ... ( P - 1 ) ) <-> ( R = 0 \/ R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) ) |
| 96 |
91 95
|
mpbid |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R = 0 \/ R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) |
| 97 |
96
|
ord |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( -. R = 0 -> R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) |
| 98 |
88 97
|
mpd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) |
| 99 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 100 |
99
|
oveq1i |
|- ( 1 ... ( P - 1 ) ) = ( ( 0 + 1 ) ... ( P - 1 ) ) |
| 101 |
98 100
|
eleqtrrdi |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R e. ( 1 ... ( P - 1 ) ) ) |
| 102 |
101 74
|
jca |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) |