| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isset | ⊢ ( 𝐴  ∈  V  ↔  ∃ 𝑦 𝑦  =  𝐴 ) | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑦 Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | nfnfc1 | ⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐴 | 
						
							| 4 |  | nfcvd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 5 |  | id | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 6 | 4 5 | nfeqd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 𝑦  =  𝐴 ) | 
						
							| 7 | 6 | nfnd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑥 ¬  𝑦  =  𝐴 ) | 
						
							| 8 |  | nfvd | ⊢ ( Ⅎ 𝑥 𝐴  →  Ⅎ 𝑦 ¬  𝑥  =  𝐴 ) | 
						
							| 9 |  | eqeq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  𝐴  ↔  𝑥  =  𝐴 ) ) | 
						
							| 10 | 9 | notbid | ⊢ ( 𝑦  =  𝑥  →  ( ¬  𝑦  =  𝐴  ↔  ¬  𝑥  =  𝐴 ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( Ⅎ 𝑥 𝐴  →  ( 𝑦  =  𝑥  →  ( ¬  𝑦  =  𝐴  ↔  ¬  𝑥  =  𝐴 ) ) ) | 
						
							| 12 | 2 3 7 8 11 | cbv2w | ⊢ ( Ⅎ 𝑥 𝐴  →  ( ∀ 𝑦 ¬  𝑦  =  𝐴  ↔  ∀ 𝑥 ¬  𝑥  =  𝐴 ) ) | 
						
							| 13 |  | alnex | ⊢ ( ∀ 𝑦 ¬  𝑦  =  𝐴  ↔  ¬  ∃ 𝑦 𝑦  =  𝐴 ) | 
						
							| 14 |  | alnex | ⊢ ( ∀ 𝑥 ¬  𝑥  =  𝐴  ↔  ¬  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 15 | 12 13 14 | 3bitr3g | ⊢ ( Ⅎ 𝑥 𝐴  →  ( ¬  ∃ 𝑦 𝑦  =  𝐴  ↔  ¬  ∃ 𝑥 𝑥  =  𝐴 ) ) | 
						
							| 16 | 15 | con4bid | ⊢ ( Ⅎ 𝑥 𝐴  →  ( ∃ 𝑦 𝑦  =  𝐴  ↔  ∃ 𝑥 𝑥  =  𝐴 ) ) | 
						
							| 17 | 1 16 | bitrid | ⊢ ( Ⅎ 𝑥 𝐴  →  ( 𝐴  ∈  V  ↔  ∃ 𝑥 𝑥  =  𝐴 ) ) |