Step |
Hyp |
Ref |
Expression |
1 |
|
xleadd1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 +𝑒 𝐶 ) ≤ ( 𝐴 +𝑒 𝐶 ) ) ) |
2 |
1
|
3com12 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 +𝑒 𝐶 ) ≤ ( 𝐴 +𝑒 𝐶 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( ¬ 𝐵 ≤ 𝐴 ↔ ¬ ( 𝐵 +𝑒 𝐶 ) ≤ ( 𝐴 +𝑒 𝐶 ) ) ) |
4 |
|
xrltnle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
6 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
7 |
|
rexr |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* ) |
8 |
7
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ* ) |
9 |
|
xaddcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐶 ) ∈ ℝ* ) |
10 |
6 8 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( 𝐴 +𝑒 𝐶 ) ∈ ℝ* ) |
11 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ* ) |
12 |
|
xaddcl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 +𝑒 𝐶 ) ∈ ℝ* ) |
13 |
11 8 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( 𝐵 +𝑒 𝐶 ) ∈ ℝ* ) |
14 |
|
xrltnle |
⊢ ( ( ( 𝐴 +𝑒 𝐶 ) ∈ ℝ* ∧ ( 𝐵 +𝑒 𝐶 ) ∈ ℝ* ) → ( ( 𝐴 +𝑒 𝐶 ) < ( 𝐵 +𝑒 𝐶 ) ↔ ¬ ( 𝐵 +𝑒 𝐶 ) ≤ ( 𝐴 +𝑒 𝐶 ) ) ) |
15 |
10 13 14
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 +𝑒 𝐶 ) < ( 𝐵 +𝑒 𝐶 ) ↔ ¬ ( 𝐵 +𝑒 𝐶 ) ≤ ( 𝐴 +𝑒 𝐶 ) ) ) |
16 |
3 5 15
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 +𝑒 𝐶 ) < ( 𝐵 +𝑒 𝐶 ) ) ) |