Step |
Hyp |
Ref |
Expression |
1 |
|
isnum2 |
⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) |
2 |
|
isnum2 |
⊢ ( 𝐵 ∈ dom card ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐵 ) |
3 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ On ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐵 ) ) |
4 |
|
omcl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 ·o 𝑦 ) ∈ On ) |
5 |
|
omxpen |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 ·o 𝑦 ) ≈ ( 𝑥 × 𝑦 ) ) |
6 |
|
xpen |
⊢ ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) → ( 𝑥 × 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) |
7 |
|
entr |
⊢ ( ( ( 𝑥 ·o 𝑦 ) ≈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) → ( 𝑥 ·o 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ) → ( 𝑥 ·o 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) |
9 |
|
isnumi |
⊢ ( ( ( 𝑥 ·o 𝑦 ) ∈ On ∧ ( 𝑥 ·o 𝑦 ) ≈ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
10 |
4 8 9
|
syl2an2r |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
11 |
10
|
ex |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card ) ) |
12 |
11
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ On ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
13 |
3 12
|
sylbir |
⊢ ( ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ∧ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
14 |
1 2 13
|
syl2anb |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |