Metamath Proof Explorer


Theorem xpsfrnel2

Description: Elementhood in the target space of the function F appearing in xpsval . (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Assertion xpsfrnel2 ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝑋𝐴𝑌𝐵 ) )

Proof

Step Hyp Ref Expression
1 xpsfrnel ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) )
2 fnpr2ob ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ↔ { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o )
3 2 biimpri ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )
4 3 3ad2ant1 ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )
5 elex ( 𝑋𝐴𝑋 ∈ V )
6 elex ( 𝑌𝐵𝑌 ∈ V )
7 5 6 anim12i ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )
8 3anass ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) ↔ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) ) )
9 fnpr2o ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o )
10 9 biantrurd ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) ↔ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) ) ) )
11 fvpr0o ( 𝑋 ∈ V → ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) = 𝑋 )
12 11 eleq1d ( 𝑋 ∈ V → ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴𝑋𝐴 ) )
13 fvpr1o ( 𝑌 ∈ V → ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) = 𝑌 )
14 13 eleq1d ( 𝑌 ∈ V → ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵𝑌𝐵 ) )
15 12 14 bi2anan9 ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) ↔ ( 𝑋𝐴𝑌𝐵 ) ) )
16 10 15 bitr3d ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) ) ↔ ( 𝑋𝐴𝑌𝐵 ) ) )
17 8 16 syl5bb ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) ↔ ( 𝑋𝐴𝑌𝐵 ) ) )
18 4 7 17 pm5.21nii ( ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } Fn 2o ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ ∅ ) ∈ 𝐴 ∧ ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ‘ 1o ) ∈ 𝐵 ) ↔ ( 𝑋𝐴𝑌𝐵 ) )
19 1 18 bitri ( { ⟨ ∅ , 𝑋 ⟩ , ⟨ 1o , 𝑌 ⟩ } ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝑋𝐴𝑌𝐵 ) )